

## 3.3V TO 18V MUX with Overcurrent Limit

Check for Samples: TPS22980

## **FEATURES**

- Powered From 3.3V
- 4.5V to 19.8V High Voltage Switch
- 3V to 3.6V Switch
- Adjustable Current Limit
- Thermal Shutdown
- Make Before Break Switch
- High Voltage Discharge Before Low Voltage Make
- Reverse Current Blocking

### **APPLICATIONS**

- Notebook Computers
- Desktop Computers
- Power Management Systems

## **DESCRIPTION**

The TPS22980 is a current-limited power mux providing a connection to a peripheral device from either a low voltage supply (3.0V up to 3.6V) or a high voltage supply (5V up to 18V). The desired output is selected by digital control signals.

The high voltage (VHV) and low voltage (V3P3) switch current limits are set with external resistance. Once the current limit is reached, the TPS22980 will control the switch to maintain the current at the limit.

When the high voltage supply is not present, the TPS22980 will maintain the connection to the output from the low voltage supply. When a high voltage line and high voltage enable signal is detected by the device, the high voltage switch will be turned on in conjunction with the low voltage switch until a reverse current is detected by the low voltage switch. The low voltage switch is then disabled allowing a seamless transition from a low voltage to a high voltage supply with minimal drop and shoot-through current.

To prevent current backflow during a transition from a VHV connection to a V3P3 connection, the TPS22980 will break the VHV connection and discharge the output to approximately 3.3V. Once the output reaches 3.3V the device will connect V3P3 switch. If a load is present, the output will transition to 0V before returning to 3.3V.

The TPS22980 is available in a 4mm x 4mm x 1mm QFN package.

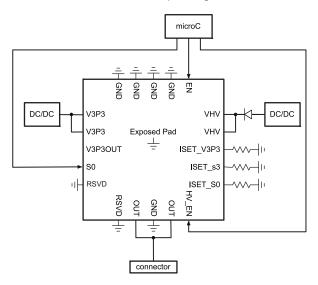
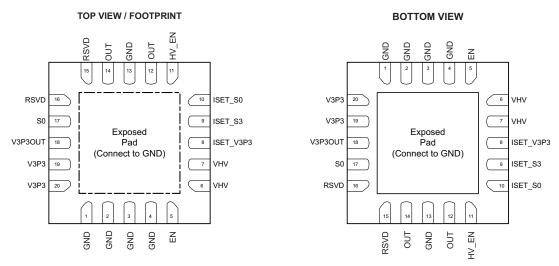



Figure 1. Typical Application




Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.





These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.



Package Size: 4mm x 4mm x 1mm height, Pad Pitch: 0.5mm

## **PIN FUNCTIONS**

|          | PIN       | PERCENTION                                                                                                                      |  |  |  |  |  |  |
|----------|-----------|---------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| NO. NAME |           | DESCRIPTION                                                                                                                     |  |  |  |  |  |  |
| 1        |           |                                                                                                                                 |  |  |  |  |  |  |
| 2        | GND       | Davideo manual                                                                                                                  |  |  |  |  |  |  |
| 3        | GND       | Device ground                                                                                                                   |  |  |  |  |  |  |
| 4        |           |                                                                                                                                 |  |  |  |  |  |  |
| 5        | EN        | Device Enable.                                                                                                                  |  |  |  |  |  |  |
| 6        | VHV       | High voltage newer gunnly input. Place a minimum of 0.1 uE conscitut as class to this nin as possible                           |  |  |  |  |  |  |
| 7        | VHV       | High voltage power supply input. Place a minimum of 0.1µF capacitor as close to this pin as possible.                           |  |  |  |  |  |  |
| 8        | ISET_V3P3 | Sets the current limit for V3P3. Place resistor between this pin and GND. See Equation 1 to calculate resistor value.           |  |  |  |  |  |  |
| 9        | ISET_S3   | Sets the current limit for VHV in S3 mode. Place resistor between this pin and GND. See Equation 1 to calculate resistor value. |  |  |  |  |  |  |
| 10       | ISET_S0   | Sets the current limit for VHV in S0 mode. Place resistor between this pin and GND. See Equation 1 to calculate resistor value. |  |  |  |  |  |  |
| 11       | HV_EN     | High voltage output enable.                                                                                                     |  |  |  |  |  |  |
| 12, 14   | OUT       | Power output. Place a minimum of 1µF capacitor as close to this pin as possible.                                                |  |  |  |  |  |  |
| 13       | GND       | Device ground.                                                                                                                  |  |  |  |  |  |  |
| 15       | D0) (D    | Decreed Mark Tarks OND                                                                                                          |  |  |  |  |  |  |
| 16       | RSVD      | Reserved. Must Tie to GND.                                                                                                      |  |  |  |  |  |  |
| 17       | S0        | When this pin is asserted, the device is put in S0 mode. Otherwise the device operates in S3 mode.                              |  |  |  |  |  |  |
| 18       | V3P3OUT   | 3.3V bypass output. Place a minimum of 0.1µF capacitor as close to this pin as possible.                                        |  |  |  |  |  |  |
| 19       | V3P3      | 2.2\/ power gupply input. Place a minimum of 0.1\(\text{UE}\) consolitor as along to this pin as possible                       |  |  |  |  |  |  |
| 20       | vsPs      | 3.3V power supply input. Place a minimum of 0.1µF capacitor as close to this pin as possible.                                   |  |  |  |  |  |  |
| EP       | GND       |                                                                                                                                 |  |  |  |  |  |  |

Product Folder Links : TPS22980

Copyright © 2011-2013, Texas Instruments Incorporated



### ABSOLUTE MAXIMUM RATINGS

over operating free-air temperature range (unless otherwise noted) (1) (2)

|                      |                                                                      | VALUE            | UNIT |
|----------------------|----------------------------------------------------------------------|------------------|------|
|                      | Input voltage range on V3P3 (VDD) <sup>(3)</sup>                     | -0.3 to 3.6      |      |
|                      | Input voltage range on EN, HVEN, ISET_V3P3, ISET_S0, ISET_S3, S0 (3) | -0.3 to V3P3+0.3 | ·    |
| VI                   | Input voltage range on VHV <sup>(3)</sup>                            | -0.3 to 20       | V    |
|                      | Output voltage range at OUT <sup>(3)</sup>                           | -0.3 to 20       |      |
|                      | Output voltage range at V3P3OUT <sup>(3)</sup>                       | -0.3 to V3P3+0.3 |      |
| T <sub>A</sub>       | Operating ambient temperature range                                  | -40 to 85        | °C   |
| T <sub>J (MAX)</sub> | Maximum operating junction temperature                               | 110              | °C   |
| T <sub>stg</sub>     | Storage temperature range                                            | -65 to 150       | °C   |
| ECD Dating           | Charge Device Model (JESD 22 C101)                                   | 500              | V    |
| ESD Rating           | Human Body Model (JESD 22 A114)                                      | 2                | kV   |

- (1) Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under recommended operating conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
- In applications where high power dissipation and/or poor package thermal resistance is present, the maximum ambient temperature may have to be de-rated. Maximum ambient temperature [T<sub>A(max)</sub>] is dependent on the maximum operating junction temperature [T<sub>J(max)</sub>], the maximum power dissipation of the device in the application [P<sub>D(max)</sub>], and the junction-to-ambient thermal resistance of the part/package in the application (θ<sub>JA</sub>), as given by the following equation: T<sub>A(max)</sub> = T<sub>J(max)</sub> – (θ<sub>JA</sub> × P<sub>D(max)</sub>)
   All voltage values are with respect to network ground terminal.

#### THERMAL INFORMATION

|                  |                                              | TPS22980 |       |
|------------------|----------------------------------------------|----------|-------|
|                  | THERMAL METRIC <sup>(1)</sup>                | RGP      | UNITS |
|                  |                                              | 16 PINS  |       |
| $\theta_{JA}$    | Junction-to-ambient thermal resistance       | 38.9     |       |
| $\theta_{JCtop}$ | Junction-to-case (top) thermal resistance    | 30.7     |       |
| $\theta_{JB}$    | Junction-to-board thermal resistance         | 11.5     | °C/W  |
| $\Psi_{JT}$      | Junction-to-top characterization parameter   | 0.4      | *C/VV |
| ΨЈВ              | Junction-to-board characterization parameter | 11.4     |       |
| $\theta_{JCbot}$ | Junction-to-case (bottom) thermal resistance | 2.2      |       |

(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.



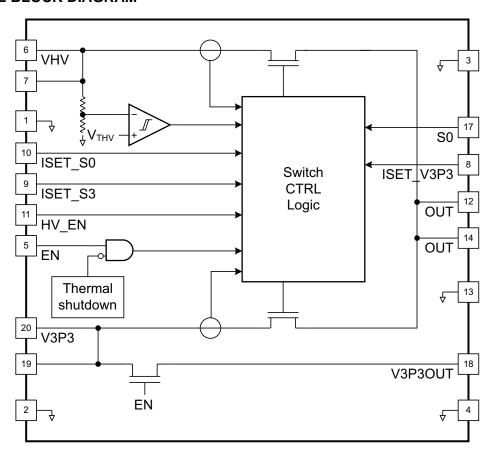
## RECOMMENDED OPERATING CONDITIONS

|                        |                      |                                          | MIN      | MAX  | UNIT |
|------------------------|----------------------|------------------------------------------|----------|------|------|
| $V_{3P3}$              | Supply voltage re    | 3.0                                      | 3.6      | V    |      |
| $V_{HV}$               | Supply voltage range |                                          | 4.5      | 19.8 | V    |
| I <sub>LIM3P3OUT</sub> | V3P3OUT Switch       | V3P3OUT Switch current range             |          |      |      |
| V <sub>IH</sub>        | Input logic high     | EN, HV_EN, S0                            | V3P3-0.6 | V3P3 | V    |
| $V_{IL}$               | Input logic low      | EN, HV_EN, S0                            | 0        | 0.6  | V    |
| R <sub>SET_V3P3</sub>  | 3.3V switch curre    | 3.3V switch current limit set resistance |          |      |      |
| R <sub>SET_S0</sub>    | VHV switch curre     | 25.3                                     | 402      | kΩ   |      |
| RS <sub>ET_S3</sub>    | VHV switch curre     | nt limit in S3 mode set resistance       | 25.3     | 402  | kΩ   |

## **ELECTRICAL CHARACTERISTICS**

Unless otherwise noted the specification applies over the  $V_{DD}$  range and operating junction temp  $-40^{\circ}\text{C} \leq T_{J} \leq 85^{\circ}\text{C}$ . Typical values are for  $V_{3P3} = 3.3\text{V}$ ,  $V_{HV} = 15\text{V}$ , and  $T_{J} = 25^{\circ}\text{C}$ .

|                      | PARAMETER                             | TEST CONDITIONS                                        | MIN | TYP  | MAX  | UNIT |
|----------------------|---------------------------------------|--------------------------------------------------------|-----|------|------|------|
| POWER SI             | JPPLIES AND CURRENTS                  |                                                        |     |      |      |      |
| V <sub>3P3</sub>     | V3P3 Input voltage range              |                                                        | 3   | 3.3  | 3.6  | V    |
| V <sub>HV</sub>      | VHV Input voltage range               |                                                        | 4.5 |      | 19.8 | V    |
| I <sub>VHVACT</sub>  | Active quiescent current from VHV     | HV_EN = 1, EN = 1                                      |     |      | 150  | μA   |
| I <sub>VHVSD</sub>   | Shutdown leakage current from VHV     | HV_EN = 0, EN = 0 or 1                                 |     |      | 30   | μA   |
| I <sub>DDACT</sub>   | Active quiescent current from V3P3    | EN = 1, HV_EN = 0                                      |     |      | 200  | μA   |
| I <sub>DDACTHV</sub> | Active quiescent current from V3P3    | EN = 1, HV_EN = 1                                      |     |      | 150  | μA   |
| I <sub>DDSD</sub>    | Shutdown Quiescent Current from V3P3  | EN = 0, OUT = 0V                                       |     |      | 10   | μA   |
| I <sub>DIS</sub>     | OUT Discharge Current                 | $EN = 1, V_{HV} = 5V$<br>HV_EN = 1 \to 0               | 5   |      | 10   | mA   |
|                      | LIV EN EN OO OO leest vie leeke ve    | V = 0 V                                                |     |      | 1    | μA   |
| I <sub>IN</sub>      | HV_EN, EN, S0, S3 Input pin leakage   | V = V3P3                                               |     |      | 1    | μΑ   |
| SWITCH A             | ND RESISTANCE CHARACTERISTICS         |                                                        |     |      |      |      |
| R <sub>SHV</sub>     | VHV Switch resistance                 | V <sub>HV</sub> = 5 V to 18V, I <sub>VHV</sub> = 1.5 A |     |      | 250  | mΩ   |
| R <sub>S3P3</sub>    | V3P3 Switch resistance                | V <sub>3P3</sub> = 3.3 V, I <sub>V3P3</sub> = 1.5 A    |     |      | 250  | mΩ   |
| R <sub>S3P3BYP</sub> | V3P3 Bypass switch resistance         | V <sub>3P3</sub> = 3.3 V, I <sub>V3P3</sub> = 500 mA   |     |      | 500  | mΩ   |
| R <sub>OUTDIS</sub>  | OUT Pulldown resistance when disabled | EN = 0                                                 | 1.5 | 2.5  | 4    | kΩ   |
| VOLTAGE              | THESHOLDS                             | •                                                      |     |      | •    |      |
| 1.7                  | VIIVIII dan valla va la al aut        | VHV Input Falling                                      | 3.6 | 4    |      |      |
| $V_{HVUVLO}$         | VHV Under voltage lockout             | VHV Input Rising                                       |     | 4    | 4.3  | V    |
|                      | VoDe II I I I I                       | V3P3 Input Falling                                     | 1.8 | 2.25 |      | .,   |
| V <sub>3P3UVLO</sub> | V3P3 Under voltage lockout            | V3P3 Input Rising                                      |     | 2.25 | 2.5  | V    |
| THERMAL              | SHUTDOWN                              |                                                        |     |      |      |      |
| T <sub>SD</sub>      | Shutdown Temperature                  |                                                        | 110 | 120  | 130  | °C   |
| T <sub>SDHYST</sub>  | Shutdown Hysteresis                   |                                                        |     | 10   |      | °C   |




## **ELECTRICAL CHARACTERISTICS (continued)**

Unless otherwise noted the specification applies over the  $V_{DD}$  range and operating junction temp  $-40^{\circ}\text{C} \leq T_{J} \leq 85^{\circ}\text{C}$ . Typical values are for  $V_{3P3} = 3.3\text{V}$ ,  $V_{HV} = 15\text{V}$ , and  $T_{J} = 25^{\circ}\text{C}$ .

|                                                        | PARAMETER                               | TEST CONDITIONS                                           | MIN  | TYP  | MAX  | UNIT |
|--------------------------------------------------------|-----------------------------------------|-----------------------------------------------------------|------|------|------|------|
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ |                                         |                                                           |      |      |      |      |
|                                                        |                                         | $R_{SET\_S0, 3} = 402 \text{ k}\Omega$                    | 100  | 110  | 150  |      |
| I <sub>LIMHV</sub>                                     | VHV Switch current limit state S0 or S3 | $R_{SET\_S0, 3} = 80.6 \text{ k}\Omega$                   | 495  | 525  | 555  | mA   |
|                                                        |                                         | $R_{SET\_S0, 3} = 26.7 \text{ k}\Omega$                   | 1515 | 1575 | 1635 |      |
|                                                        |                                         | $R_{SET_V3P3} = 402 \text{ k}\Omega$                      | 100  | 110  | 150  |      |
| I <sub>LIM3P3</sub>                                    | V3P3 Switch current limit               | $R_{SET_V3P3} = 80.6 \text{ k}\Omega$                     | 495  | 525  | 555  | mA   |
|                                                        |                                         | $R_{SET\_V3P3} = 26.7 \text{ k}\Omega$                    | 1515 | 1575 | 1635 |      |
| I <sub>REV3P3</sub>                                    | V3P3 Switch Reverse Current Limit       |                                                           | 10   | 27   | 45   | mA   |
| T <sub>V3P3RC</sub>                                    | •                                       | $V_{OUT} = V_{3P3} \rightarrow V_{3P3} + 20mV$            |      |      | 100  | μS   |
| T <sub>VHVSC</sub>                                     | VHV Switch short circuit response time  | C <sub>OUT</sub> = 20 pF                                  |      | 8    |      | μs   |
| T <sub>V3P3SC</sub>                                    | V3P3 Switch short circuit response time | C <sub>OUT</sub> = 20 pF                                  |      | 8    |      | μs   |
| TRANSITIO                                              | ON DELAYS                               |                                                           |      |      |      |      |
| T <sub>3P3OFF</sub>                                    | VHV to V3P3 off time                    | $C_{OUT} = 1.1 \mu F$ , EN = 1, HV_EN = 1 $\rightarrow$ 0 |      |      | 6    | ms   |
| T <sub>0-3.3V</sub>                                    | 0V to 3.3V ramp time                    | C <sub>OUT</sub> ≤ 20 pF                                  |      |      | 6    | ms   |
| T <sub>3.3V-VHV</sub>                                  | 3.3V to VHV ramp time                   | C <sub>OUT</sub> ≤ 20 pF                                  |      |      | 6    | ms   |
| T <sub>VHV-3.3V</sub>                                  | VHV to 3.3V ramp time                   | C <sub>OUT</sub> ≤ 20 pF                                  |      |      | 23   | ms   |
| T <sub>LIM</sub>                                       | Overcurrent response time               | C <sub>OUT</sub> ≤ 20 pF                                  |      |      | 0.5  | ms   |

## **FUNCTIONAL BLOCK DIAGRAM**



Copyright © 2011–2013, Texas Instruments Incorporated

Submit Documentation Feedback



#### **APPLICATION INFORMATION**

#### **CURRENT LIMIT**

The TPS22980 provides current limiting in the power switches. Both the VHV supply current limit and the V3P3 supply current limit are adjustable by external resistors.

Figure 2 shows a simplified view of the TPS22980 current limit function. Both the VHV supply current limit and the V3P3 supply current limit are adjustable by external resistors.

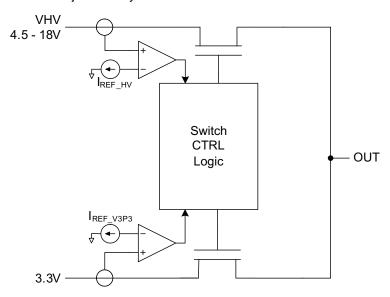



Figure 2. Simplified Current Limit Diagram

The current limit thresholds,  $I_{REF\_HV}$  and  $I_{REF\_V3P3}$ , are set with three external resistors as shown in Figure 3. When the TPS22980 is passes the V3P3 voltage, the current limit is set by  $R_{ISET\_V3P3}$ . The VHV path has two modes that support two different current limits which are selected by the S0 pin. When S0 is asserted high,  $R_{ISET\_S0}$  sets the current limit. When S0 is low,  $R_{ISET\_S3}$  sets the current limit. This allows the system to have two separate VHV current limits for different modes such as active and sleep.

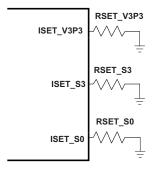
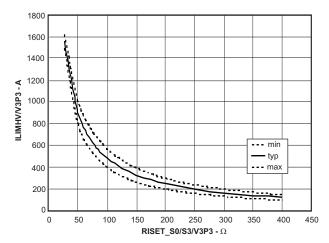




Figure 3. External R<sub>SET</sub> Resistances to Set Current Limits

## **CURRENT LIMIT THRESHOLD**





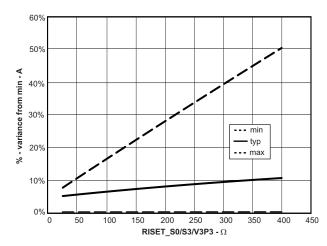



Figure 4. I<sub>LIM</sub> vs R<sub>SET</sub> for VHV and V3P3

Figure 5. Percent Variance from min I<sub>LIM</sub> vs R<sub>SET</sub>

Figure 4 shows the minimum, typical, and maximum current limit for either supply versus its corresponding  $R_{\text{ISET}}$  value. Equation 1 is used to determine the  $R_{\text{ISET}}$  needed to set a minimum ILIM for a given supply and mode. Figure 5 shows the approximate variation from the set minimum  $I_{\text{LIM}}$  value to the typical and maximum  $I_{\text{LIM}}$  values.

$$RISET = \frac{40 \text{ k}\Omega \times Amps}{ILIMmin}$$
 (1)

where:

 $R_{ISET}$  = external resistor used to set the current limit for V3P3, VHV (S0), or VHV (S3), and  $I_{LIMmin}$  = current limit for V3P3, VHV (S0), or VHV (S3) set by the external  $R_{ISET}$  resistor.

Each resistor is placed between the corresponding ISET pin and GND, as shown in Figure 3, providing a minimum current limit between 100mA and 1.5A.

#### TRANSITION DELAYS

Output transitions of the TPS22980 voltages are shown in Figure 6. When the device transitions from VHV to V3P3 at the output, the power switches both turn off until the output falls to near the V3P3 voltage. During this time, a discharge current (IDIS) pulls OUT down. If a load on the line is also pulling OUT down, the output can drop to 0V due to the switch off time of T3P3OFF. Figure 7 shows the voltage drop on the output during this transition with no output capacitance.



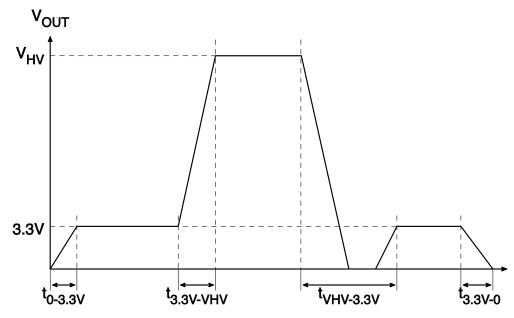



Figure 6. Allowable Voltage Transitions

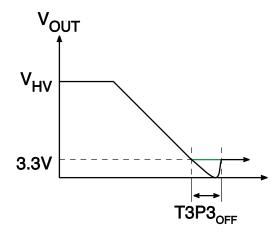



Figure 7. Voltage Drop During Transitions from VHV

## **DIGITAL CONTROL SIGNALS**

The voltage at OUT is controlled by two digital logic input signals, EN and HV\_EN. HV\_EN controls the state of the VHV switch and EN controls the state of V3P3 switch. Table 1 lists the possible output states given the conditions of the digital logic signals. State PD indicates a pulldown resistance of R<sub>OUTDIS</sub> to GND.

Table 1. Output State of OUT Given the States EN and HV\_EN

| EN | HV_EN | OUT  |
|----|-------|------|
| 0  | 0     | PD   |
| 0  | 1     | PD   |
| 1  | 0     | V3P3 |
| 1  | 1     | VHV  |

Submit Documentation Feedback



Figure 8 shows possible combinations of EN and HV\_EN controlling OUT of the TPS22980.

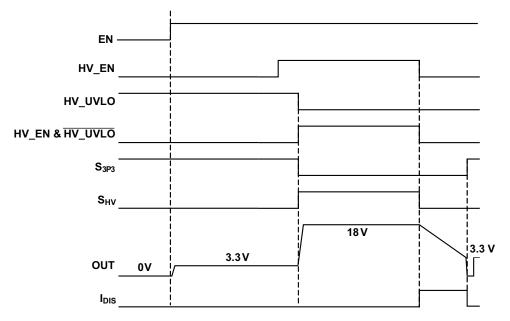



Figure 8. Logic Waveforms Displaying the Transition Between VHV and V3P3

## **OVER-CURRENT LIMIT AND SHORT CIRCUIT PROTECTION**

When the load at OUT attempts to draw more current than the limit set by the external RISET resistors for the V3P3 switch and VHV switch (for both S0 and S3 modes), the device will operate in a constant current mode while lowering the output voltage. Figure 9 shows the delay, t<sub>LIM</sub>, which occurs when an over-current fault is detected until the output current is lowered to ILIMHV tolerances for VHV or ILIM3V3 tolerances for V3P3 as shown in Figure 4.

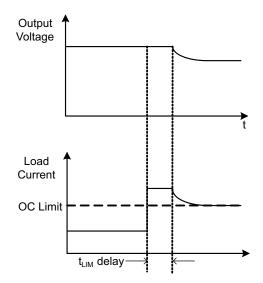



Figure 9. Overcurrent Output Response

All short circuit conditions are treated as over-current conditions. In the event of a short circuit, the device will limit the output current to the corresponding  $R_{\text{SET}}$  value and continue to do so until thermal shutdown is encountered or the short circuit condition is removed.



#### **Reverse Current Protection**

Reverse current protection for the V3P3 supply to OUT triggers at I<sub>REV3P3</sub> causing the V3P3 supply switch to open. When the HV\_EN signal is not asserted and reverse current protection is triggered, a discharge current source is turned on to bring the output voltage to 3.3V nominal.

#### **Thermal Shutdown**

The device enters thermal shutdown when junction temperature reaches T<sub>SD</sub>. The device will resume the previous state on power up once the junction temperature has dropped by 10°C. Connect thermal vias to the exposed GND pad underneath the device package for improved thermal diffusion.

#### **UVLO**

When the VHV rail reaches the under-voltage lockout threshold of  $V_{HVUVLO}$  while HV\_EN is high, the device will switch back to V3P3. Once the UVLO condition has cleared, the device will switch to VHV again. When the V3P3 rail reaches the under-voltage lockout threshold of  $V_{3P3UVLO}$ , regardless of the states of any digital logic controls, the device will open all switches and enter a reset condition.

## **Input Inductive Bounce at Short Circuit**

When the TPS22980 is operating at high currents and high input voltage on VHV, a short circuit condition can cause the input to exceed the maximum safe operating condition for VHV. When a significant inductance is present at the VHV input, sudden turn off of current through the device may produce a large enough inductive voltage bounce that exceeds the maximum safe operating condition and may damage the TPS22980. To prevent this, reduce any inductance at the input. Input capacitors, such as 4.7µF, can reduce the supply bounce and are recommended.

## **Single Point Failure Protection**

The TPS22980 current limits are set by the RISET resistances. Shorting one of these resistance would result in a single point failure that removes the current limiter for that particular input and mode. Without current limiting, an excessive current load may damage the TPS22980 and the system. To prevent a single point failure from occurring, the RISET resistances can be divided into two series resistances each as shown in Figure 10. Failure of a single resistance will not result in runaway current and damage.

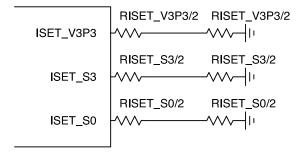



Figure 10. R<sub>ISET</sub> Division to Prevent Single Point Failure

Product Folder Links : TPS22980

Copyright © 2011-2013, Texas Instruments Incorporated



## **REVISION HISTORY**

| Changes from Original (December 2011) to Revision A                                                               | Page |
|-------------------------------------------------------------------------------------------------------------------|------|
| Changed Typical Application figure.                                                                               | 1    |
| Added bottom view pin out information.                                                                            | 2    |
| Updated Pin Functions Table                                                                                       |      |
| <ul> <li>Added reverse current and thermal shutdown parameters to the ELECTRICAL CHARACTERISTICS table</li> </ul> | 4    |
| Updated the APPLICATION INFORMATION section.                                                                      | 6    |
| Changes from Revision A (February 2012) to Revision B                                                             | Page |
| Changed bottom view pin out information.                                                                          | 2    |
| Changes from Revision B (April 2012) to Revision C                                                                | Page |
| Removed ordering information table.                                                                               |      |
| Added R <sub>OUTDIS</sub> parameter to the Electrical Characteristics table.                                      |      |
| Updated the DIGITAL CONTROL SIGNALS section.                                                                      | 8    |

www.ti.com 11-Nov-2025

#### PACKAGING INFORMATION

| Orderable part number | Status | Material type | Package   Pins | Package qty   Carrier | <b>RoHS</b> (3) | Lead finish/<br>Ball material | MSL rating/<br>Peak reflow | Op temp (°C) | Part marking (6) |
|-----------------------|--------|---------------|----------------|-----------------------|-----------------|-------------------------------|----------------------------|--------------|------------------|
| TPS22980RGPR          | Active | Production    | QFN (RGP)   20 | 3000   LARGE T&R      | Yes             | NIPDAU                        | Level-2-260C-1 YEAR        | -40 to 85    | PS22980          |
| TPS22980RGPR.A        | Active | Production    | QFN (RGP)   20 | 3000   LARGE T&R      | Yes             | NIPDAU                        | Level-2-260C-1 YEAR        | -40 to 85    | PS22980          |
| TPS22980RGPR.B        | Active | Production    | QFN (RGP)   20 | 3000   LARGE T&R      | Yes             | NIPDAU                        | Level-2-260C-1 YEAR        | -40 to 85    | PS22980          |

<sup>(1)</sup> Status: For more details on status, see our product life cycle.

Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device.

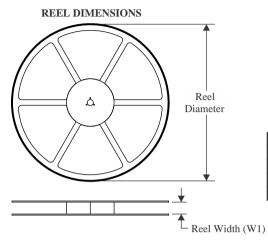
Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

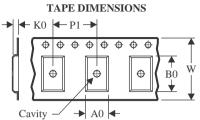
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

<sup>(2)</sup> Material type: When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.

<sup>(3)</sup> RoHS values: Yes, No, RoHS Exempt. See the TI RoHS Statement for additional information and value definition.

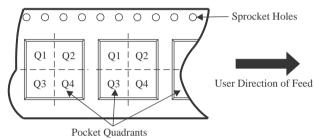
<sup>(4)</sup> Lead finish/Ball material: Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.


<sup>(5)</sup> MSL rating/Peak reflow: The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.


<sup>(6)</sup> Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.

## **PACKAGE MATERIALS INFORMATION**

www.ti.com 20-Apr-2023

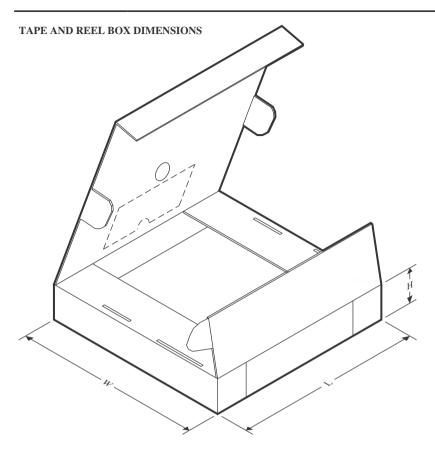

## TAPE AND REEL INFORMATION





| A0 | Dimension designed to accommodate the component width     |
|----|-----------------------------------------------------------|
| В0 | Dimension designed to accommodate the component length    |
| K0 | Dimension designed to accommodate the component thickness |
| W  | Overall width of the carrier tape                         |
| P1 | Pitch between successive cavity centers                   |

## QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

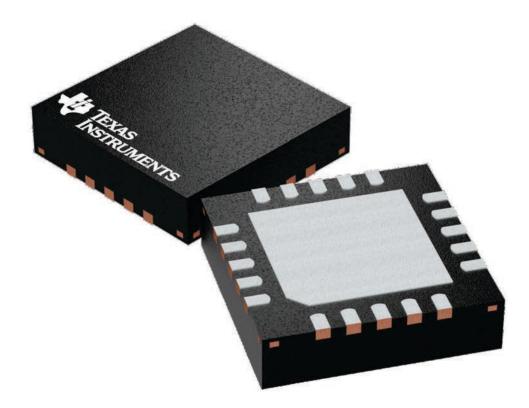



#### \*All dimensions are nominal

| Device       | Package<br>Type | Package<br>Drawing |    | SPQ  | Reel<br>Diameter<br>(mm) | Reel<br>Width<br>W1 (mm) | A0<br>(mm) | B0<br>(mm) | K0<br>(mm) | P1<br>(mm) | W<br>(mm) | Pin1<br>Quadrant |
|--------------|-----------------|--------------------|----|------|--------------------------|--------------------------|------------|------------|------------|------------|-----------|------------------|
| TPS22980RGPR | QFN             | RGP                | 20 | 3000 | 330.0                    | 12.4                     | 4.25       | 4.25       | 1.15       | 8.0        | 12.0      | Q2               |

# PACKAGE MATERIALS INFORMATION

www.ti.com 20-Apr-2023

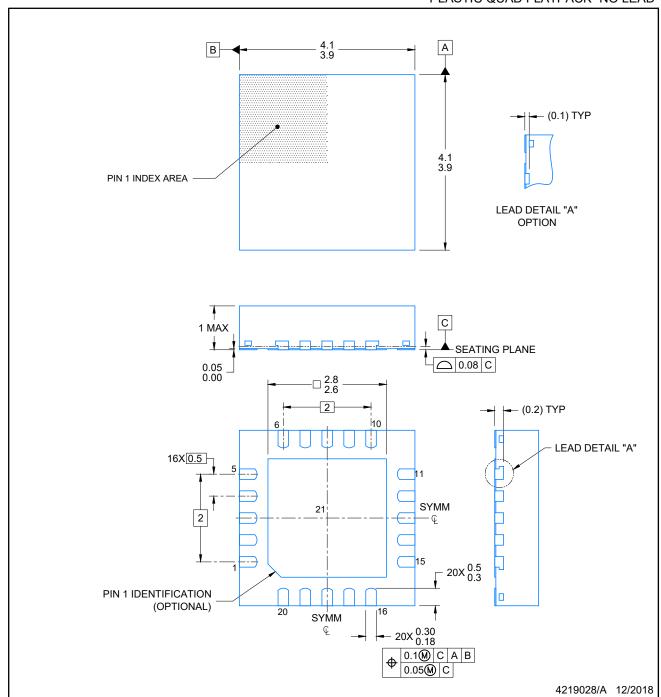



## \*All dimensions are nominal

| Device    | •    | Package Type | Package Drawing | Pins | SPQ  | Length (mm) | Width (mm) | Height (mm) |
|-----------|------|--------------|-----------------|------|------|-------------|------------|-------------|
| TPS22980F | RGPR | QFN          | RGP             | 20   | 3000 | 346.0       | 346.0      | 33.0        |

4 x 4, 0.5 mm pitch

VERY THIN QUAD FLATPACK




Images above are just a representation of the package family, actual package may vary. Refer to the product data sheet for package details.

4224735/A



PLASTIC QUAD FLATPACK- NO LEAD

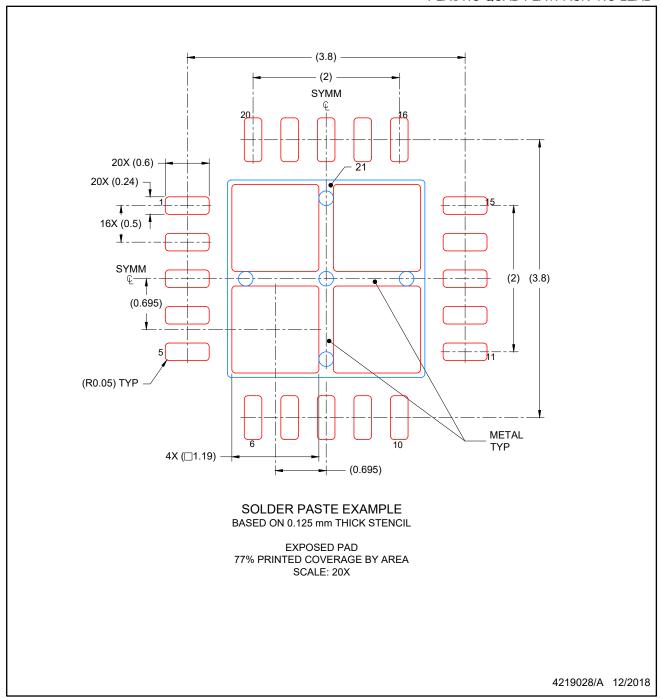



## NOTES:

- All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
- 2. This drawing is subject to change without notice.
- 3. The package thermal pad must be soldered to the printed circuit board for optimal thermal and mechanical performance.



PLASTIC QUAD FLATPACK- NO LEAD




NOTES: (continued)

- 4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).
- 5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown on this view. It is recommended that vias under paste be filled, plugged or tented.



PLASTIC QUAD FLATPACK- NO LEAD



NOTES: (continued)

6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

## IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you fully indemnify TI and its representatives against any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale, TI's General Quality Guidelines, or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products. Unless TI explicitly designates a product as custom or customer-specified, TI products are standard, catalog, general purpose devices.

TI objects to and rejects any additional or different terms you may propose.

Copyright © 2025, Texas Instruments Incorporated

Last updated 10/2025