
TPS2350 –48-V Hot Swap/Supply Selector Evaluation Module

User's Guide

EVM IMPORTANT NOTICE (CATEGORY B)

IMPORTANT: TI is providing the enclosed **HPA021A** evaluation module under the following conditions:

This evaluation module (EVM) being provided by Texas Instruments (TI) is intended for use for **ENGINEERING DEVELOPMENT OR EVALUATION PURPOSES ONLY** and is not considered by Texas Instruments to be fit for commercial use. As such, this EVM may not be complete in terms of design and/or manufacturing related protective considerations including product safety measures typically found in the end-product incorporating the module. As a prototype, this product does not fall within the scope of the European Union Directive on electromagnetic compatibility and on low voltage and therefore may not meet the technical requirements of the directive. This EVM is not subject to the EU marking requirements.

- Should this EVM not meet the specifications indicated in the User's Guide the EVM may be returned within 30 days from the date of delivery for a full refund. **THE FOREGOING WARRANTY IS THE EXCLUSIVE WARRANTY MADE BY TI AND IS IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED, IMPLIED, OR STATUTORY, INCLUDING ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE.**
- The user assumes all responsibility and liability for proper and safe handling of the EVM. The user acknowledge that the use of the EVM could present serious hazards and that it is the user's responsibility to take all precautions for the handling and use of the EVMs in accordance with good laboratory practices. Please be aware that the products received may not be regulatory compliant or agency certified (FCC, UL, etc.). Due to the open construction of the product, it is the user's responsibility to take any and all appropriate precautions with regard to electrostatic discharge.
- **NEITHER PARTY WILL BE LIABLE TO THE OTHER FOR ANY INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES.**
- TI is currently dealing with various customers for products, and therefore our arrangement with the user **will not be exclusive**.
- TI assumes **no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein**.
- Please read the User's Guide and specifically the section in the User's Guide pertaining to warnings and restrictions prior to handling the product. This section contains important information regarding high temperature and voltages which TI recommends to be read before handling the EVMs. In case of any doubt regarding safety, please contact the TI application engineer.
- Persons handling the product should have electronics training and observe good laboratory practice standards.
- No license is granted under any patent right or other intellectual property right of TI covering or relating to any combination, machine, or process in which such TI products or services might be or are used.
- This Agreement is subject to the laws of the State of Texas, excluding the body of conflicts of laws and the United Nations Convention on the International Sale of Goods, and will be subject to the exclusive jurisdiction of the courts of the State of Texas.

DYNAMIC WARNINGS AND RESTRICTIONS

It is important to operate this EVM within the maximum input voltage ranges specified in Table 2.

Exceeding the specified input range may cause unexpected operation and/or irreversible damage to the EVM. If there are questions concerning the input range, please contact a TI field representative prior to connecting the input power.

Applying loads outside of the specified output range may result in unintended operation and/or possible permanent damage to the EVM. Please consult the EVM User's Guide prior to connecting any load to the EVM output. If there is uncertainty as to the load specification, please contact a TI field representative.

During normal operation, some circuit components may have case temperatures greater than 50°C. The EVM is designed to operate properly with certain components above 50°C as long as the input and output ranges are maintained. These components include but are not limited to linear regulators, switching transistors, pass transistors, and current sense resistors. These types of devices can be identified using the EVM schematic located in the EVM User's Guide. When placing measurement probes near these devices during operation, please be aware that these devices may be very warm to the touch.

Mailing Address:

Texas Instruments
Post Office Box 655303
Dallas, Texas 75265

Copyright © 2003, Texas Instruments Incorporated

TPS2350 –48-V Hot Swap/Supply Selector Evaluation Module

Andy Ripanti

Portable Power

ABSTRACT

This User's Guide describes the use and features of the TPS2350 –48-V Hot Swap/Supply Selector Evaluation Module (EVM). This EVM can be used to learn about the TPS2350 Hot Swap Power Manager (HSPM) Integrated Circuit (IC) from Texas Instruments (TI).

Contents

1	Introduction	5
1.1	Features	5
1.2	Description	5
2	The TPS2350 –48-V Hot Swap/Supply Selector EVM Kit	6
2.1	Module Description	6
2.2	EVM Schematic Diagram and List of Materials	8
2.3	TPS2350 –48-V Hot Swap/Supply Selector EVM Operating Specifications	11
3	Getting Started	11
3.1	Equipment Requirements	11
3.2	Verifying the EVM Operation	12
3.2.1	<i>Equipment Setup</i>	12
3.2.2	<i>Functional Test</i>	13
4	List of Materials	14
4.1	Supply Connections and Test Points	14
4.2	Load Capacitors	15
4.3	Supply Selector	15
4.4	Changing the Current Limit Threshold	16
4.5	Changing the Inrush Slew Rate	16
4.6	Fault Timing with the TPS2350	18
4.7	Programming the UVLO and OVLO Thresholds and Hysteresis	18
4.8	TPS2350 Powergood Output (PG)	19

1 Introduction

The TPS2350 is a negative voltage hot swap controller intended for use in systems needing to hot swap telecom distribution-level voltages. It integrates inrush current control, peak current limiting, electronic circuit breaker, and overvoltage and undervoltage protection. In addition, it monitors and selects from two power supplies the larger magnitude supply, reducing OR-ing losses in redundant supply systems. The EVM is a PCB-based tool featuring the TPS2350 in a hot swap circuit, and can be used to evaluate device operation in simulated live insertion events.

1.1 Features

The following list highlights some of the features of the TPS2350 device.

- Wide input supply range of -12 V to -80 V
- Transient rating to -100 V
- Programmable current limit
- Programmable linear inrush slew rate
- Redundant supply selector function
- Programmable UV/OV thresholds/hysteresis
- Fault timer to eliminate nuisance trips
- Open-drain power good (PG) output
- Open-drain fault output ($\overline{\text{FLT}}$)
- 14-pin TSSOP package

1.2 Description

The TPS2350 integrated circuit is a hot swap power manager optimized for use in nominal -48-V systems. It operates over a supply voltage range of -12 V to -80 V , and is rated to withstand spikes to -100 V . In conjunction with an external N-channel FET and sense resistor, it can be used to enable live insertion of plug-in cards and modules into powered systems. It provides load current slew rate control and peak magnitude limiting. Undervoltage and overvoltage shutdown thresholds are easily programmed via a three-resistor divider network. A power good (PG) output enables downstream converters. The TPS2350 also provides the basic hot swap functions of electrical isolation of faulty cards, filtered protection against nuisance overcurrent trips, and single-line fault reporting.

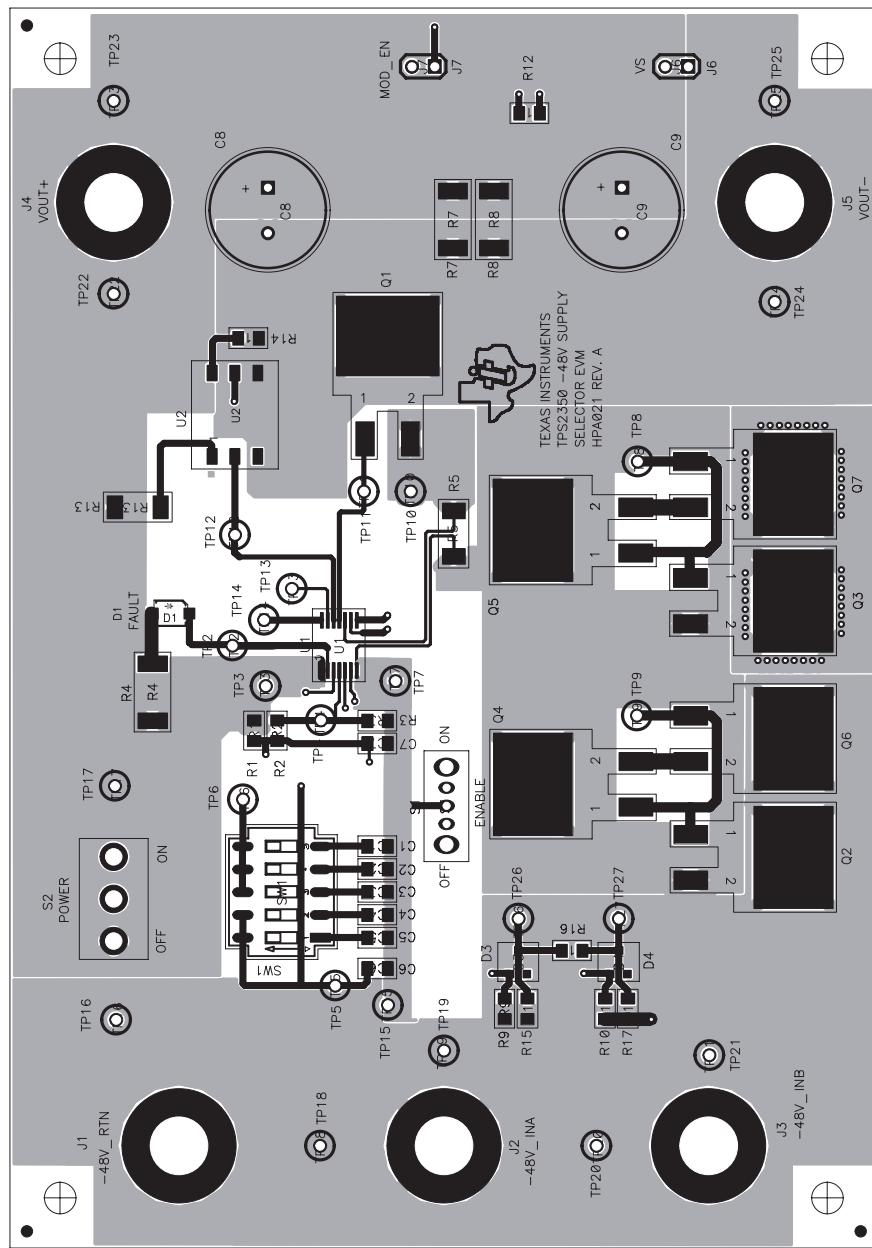
The TPS2350 also provides a unique feature for redundant-supply systems. The supply selection function can be used to reduce power losses of diode-OR systems. A selection comparator monitors the two input supplies, and selects the supply with the larger magnitude. Internal driver circuits provide the gate drive needed to control two external N-channel FETs, providing a low-loss switch closure for the active supply, while disconnecting the lower voltage supply.

For input capacitor charging and load current faults, the TPS2350 provides an internal fault timer to filter out spurious current glitch events. In the event of a persistent fault which exceeds the programmable timer setting, the TPS2350 turns off the hot swap FET, disconnecting the load. A retry mode periodically tests for continued existence of the fault at a low duty cycle, thus protecting the pass FET from excessive dissipation.

2 The TPS2350 –48-V Hot Swap/Supply Selector EVM Kit

2.1 Module Description

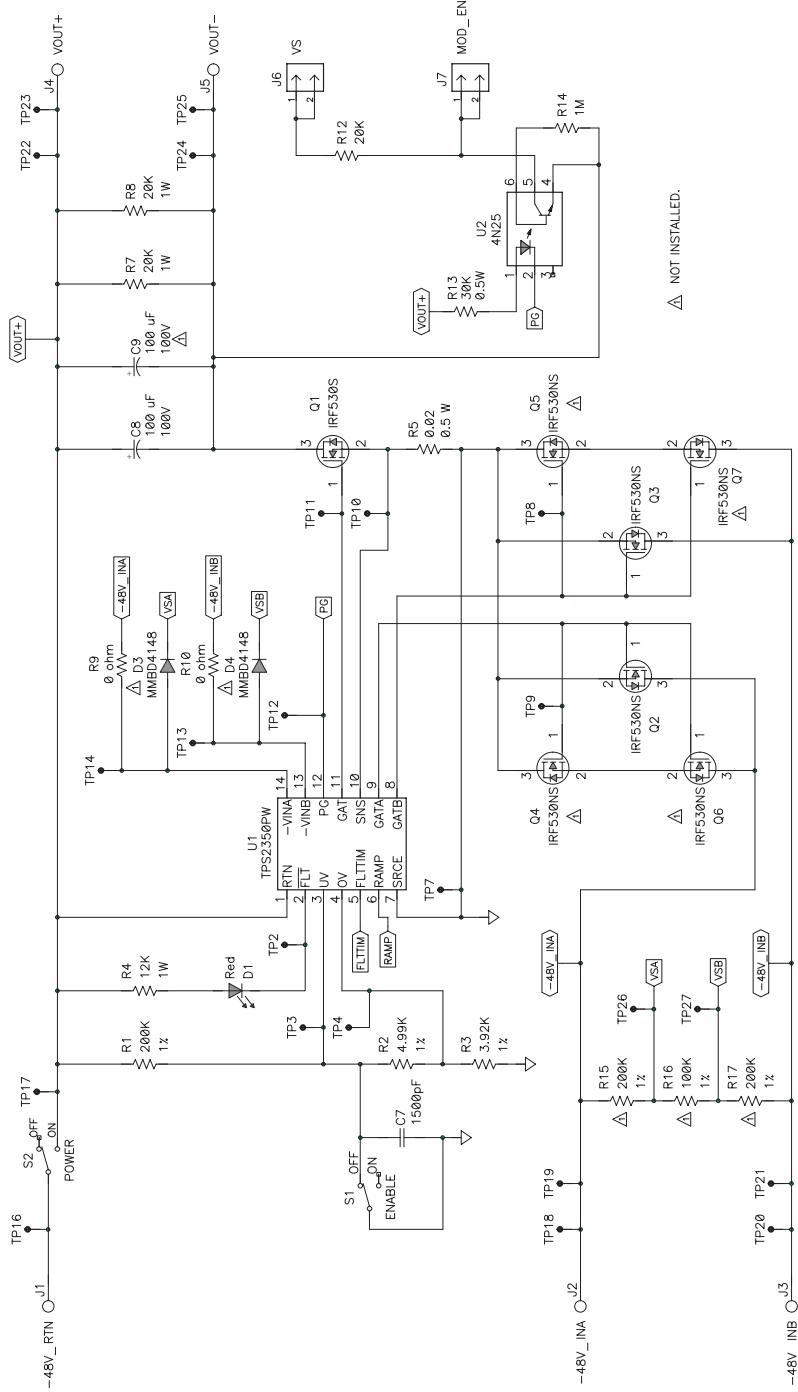
The TPS2350 –48-V hot swap/supply selector EVM kit is a PCB-based platform that enables designers to rapidly learn about the TPS2350 operation, and evaluate its performance during hot swap events. The assembly (TI part number HPA021–001) features a TPS2350 device as it may be connected in the power interface section of a hot swap-capable plug-in card. The assembly also provides additional controls and components to simplify testing and for quick modifications of the circuit characteristics. Input power to the module is connected at three banana jacks located on the left-hand side of the board. A toggle switch is provided to rapidly apply power to and remove it from the circuit.


The hot swap circuit on the EVM board contains the TPS2350 HSPM device, a power MOSFET switch, sense resistor and some configuration capacitors. Two through-hole patterns are provided on the load side for the installation of large-value aluminum electrolytic capacitors. These capacitors simulate the input bulk capacitance that may be found on the target module's back-end supply plane. The EVM is supplied from the factory with a 100- μ F capacitor installed in one of the locations. The second pattern, connected in parallel with the first, can be used to increase or otherwise modify the amount of load capacitance. With the TPS2350, both inrush slew rate limiting and a fault time-out period are externally programmable using capacitors. On the EVM board, several options are provided for slew rate limit setting, for quick comparison of the effect of capacitor value on this function. The capacitors can be quickly switched in and out of the circuit via the DIP switch SW1. Fault timing programming is set up in a similar manner; some amount of capacitance is hard-wired into the circuit, with the option of switching in additional capacitance.

N-channel FETs are also provided on-board to exercise or demonstrate the supply selection operation of the TPS2350 when two supplies are connected to the board.

The board also contains the component patterns and connections to exercise the undervoltage (UVLO) and overvoltage (OVLO) lockout functions. A slide switch is also tied into the UV input pin to provide an alternate means of enabling and disabling the output voltage. The powergood output can be monitored directly at the device pin, or through the on-board opto-coupler.

Test points are provided throughout the circuit for easy voltage monitoring via oscilloscope or voltmeter. The test point connections are listed in Table 6.


The pictorial of the TPS2350 –48-V hot swap/supply selector EVM top assembly is shown in Figure 1.

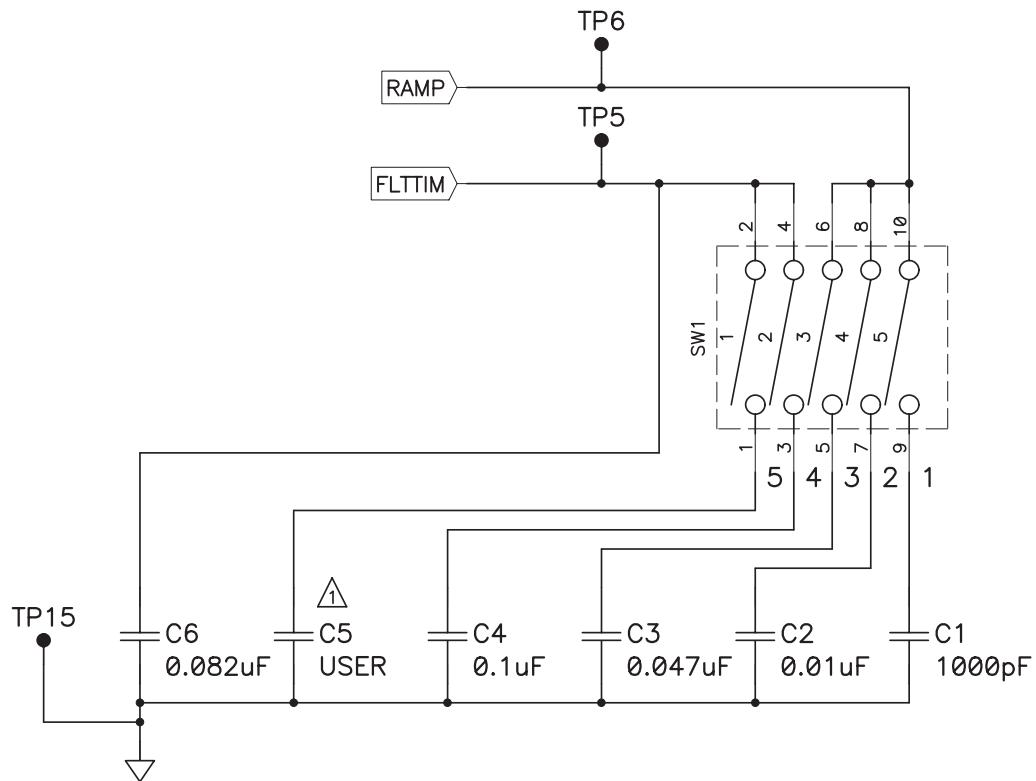


Figure 1. Evaluation Module Top Assembly

2.2 EVM Schematic Diagram and List of Materials

The EVM schematic diagram is shown in Figures 2 and 3.

Figure 3. TPS2350 -48-V Hot Swap/Supply Selector EVM Schematic (Sheet 2)

The EVM list of materials is shown in Table 1.

Table 1. Evaluation Module List of Materials (HPA021A)

REFERENCE	QTY	DESCRIPTION	MANUFACTURER	PART NUMBER
C1	1	Capacitor, ceramic, 1000 pF, 25 V, 10%, X7R	Vitramon	VJ0805Y102KXXA
C2	1	Capacitor, ceramic, 0.01 μ F, 16 V, 10%, X7R	Vitramon	VJ0805Y103KXJA
C3	1	Capacitor, ceramic, 0.047 μ F, 16 V, 10%, X7R	Vitramon	VJ0805Y473KXJA
C4	1	Capacitor, ceramic, 0.1 μ F, 16 V, 10%, X7R	Vitramon	VJ0805Y104KXJA
C5	–	Capacitor, ceramic, 0805	Standard	Standard
C6	1	Capacitor, ceramic, 0.082 μ F, 16 V, 10%, X7R	Vitramon	VJ0805Y823KXJA
C7	1	Capacitor, ceramic, 1500 pF, 25 V, 20%, X7R	Vitramon	VJ0805Y152MXXA
C8	1	Capacitor, aluminum electrolytic, 100 μ F, 100 V, 20%	Vishay	EKA00DE310L00
C9	–	Capacitor, aluminum electrolytic, 100 V, radial	Standard	Standard
D1	1	DIODE, LED, ultra bright red, GW type	Panasonic	LN1261CAL
D3, D4	–	DIODE, Switching, 75 V, 0.35 W, type 4148	Standard	Standard
Q1	1	MOSFET, N-channel, V(BR) > 100 V	Int'l Rectifier	IRF530S
Q2, Q3	2	MOSFET, N-channel, V(BR) > 100 V	Int'l Rectifier	IRF530NS
Q4, Q5, Q6, Q7	–	MOSFET, N-channel, V(BR) > 100 V	Int'l Rectifier	IRF530NS
R1	1	Resistor, 200 k Ω , 0.1 W, 1%	Vishay	CRCW0805–2003F
R2	1	Resistor, 4.99 k Ω , 0.1 W, 1%	Vishay	CRCW0805–4991F
R3	1	Resistor, 3.92 k Ω , 0.1 W, 1%	Vishay	CRCW0805–3921F
R4	1	Resistor, 12 k Ω , 1 W, 5%	Vishay	CRCW2512–123J
R5	1	Resistor, 0.02 Ω , 0.5 W, 1%	Vishay–Dale	WSL–2010 .020<1%
R7, R8	2	Resistor, 20 k Ω , 1 W, 5%	Vishay	CRCW2512–203J
R9, R10	2	Resistor, 0 Ω jumper, 0805	Vishay	CRCW0805–000Z
R12	1	Resistor, 20 k Ω , 0.1 W, 5%	Vishay	CRCW0805–203J
R13	1	Resistor, 30 k Ω , .5 W, 5%	Vishay	CRCW2010–303J
R14	1	Resistor, 1.0 M, 0.1 W, 5%	Vishay	CRCW0805–105J
R15, R16, R17	–	Resistor, 1 W, 1%, 0805	Standard	Standard
S1	1	Switch, slide, SPDT, vertical act., 100 mA	E-Switch	EG1249
S2	1	Switch, toggle, SPDT, PC mount	E-Switch	100SP1T1B1M2QE
SW1	1	Switch, dip, 5 position, SPST	CTS	219–05MS
J1, J2, J3, J4, J5	5	Jack, banana, non-insulated, PC mount	Pomona	3267
J6, J7	2	Header, 2-pin, Single row, 0.10-C, 0.025 square, 0.230 head	Sullins	PTC36SAxN
N/A	4	Spacer, nylon, hex, #6–32, 0.625"	Eagle	14HTSP020
TP7, TP15, TP18 – TP21	6	Jack, test point, black	Farnell	240–333
TP2–TP6, TP8–TP14, TP16, TP17, TP22–TP27	20	Jack, test point, red	Farnell	240–345
N/A	4	Screw, nylon, round head, #6–32, 0.25"	Eagle	010632R025
N/A	1	PCB, FR-4, 2-layer, SMOBC, 5.43" x 3.80", 0.062"	Texas Instruments	HPA021
U1	1	IC, Hot Swap Power Manager for Redundant –48-V Supplies	Texas Instruments	TPS2350PW
U2	1	IC, linear, optocoupler, 30 V, CTR = 0.2 minimum	Fairchild	4N25.S

2.3 TPS2350 –48-V Hot Swap/Supply Selector EVM Operating Specifications

The supply selector EVM is intended to allow some degree of user reconfiguration. This allows designers to set up the circuit to better represent the characteristics of their target application. Potential modifications include changing the current limit threshold, the inrush limiting, the fault timing, and load characteristics. However, under no circumstances should the EVM kit be operated beyond the absolute maximum conditions specified in Table 2.

Table 2. EVM Absolute Maximum Ratings⁽¹⁾

PARAMETER	MIN	MAX	UNITS
Input voltage range, J2, J3 ⁽²⁾	-100	0.3	V
Input voltage range, J6 ⁽³⁾		30	
Load current, J4		-2.25	A
Load return current, J5		2.25	
Ambient operating temperature range	-40	85	°C

NOTES: (1) Currents are positive into and negative out of the specified terminal.

(2). With respect to the PCB –48V_RTN node at J1.

(3). With respect to the VOUT– node at J5.

As supplied from the factory, the supply selector EVM is configured for operation under the following target conditions, shown in Table 3.

Table 3. EVM Recommended Operating Conditions⁽¹⁾

PARAMETER	MIN	NOM	MAX	UNITS
Input supply voltage, J2, J3 ⁽²⁾	0	-48	-80	V
Input supply voltage, J6 ⁽³⁾	-1	5	20	
Nominal load current, J4		-1		A
Nominal load return current, J5		1		
Operating temperature range	-40		85	°C

NOTES: (1). Currents are positive into and negative out of the specified terminal.

(2). With respect to the PCB –48V_RTN node at J1.

(3). With respect to the VOUT– node at J5.

3 Getting Started

3.1 Equipment Requirements

The following test equipment is required to use the TPS2350 –48-V hot swap/supply selector EVM .

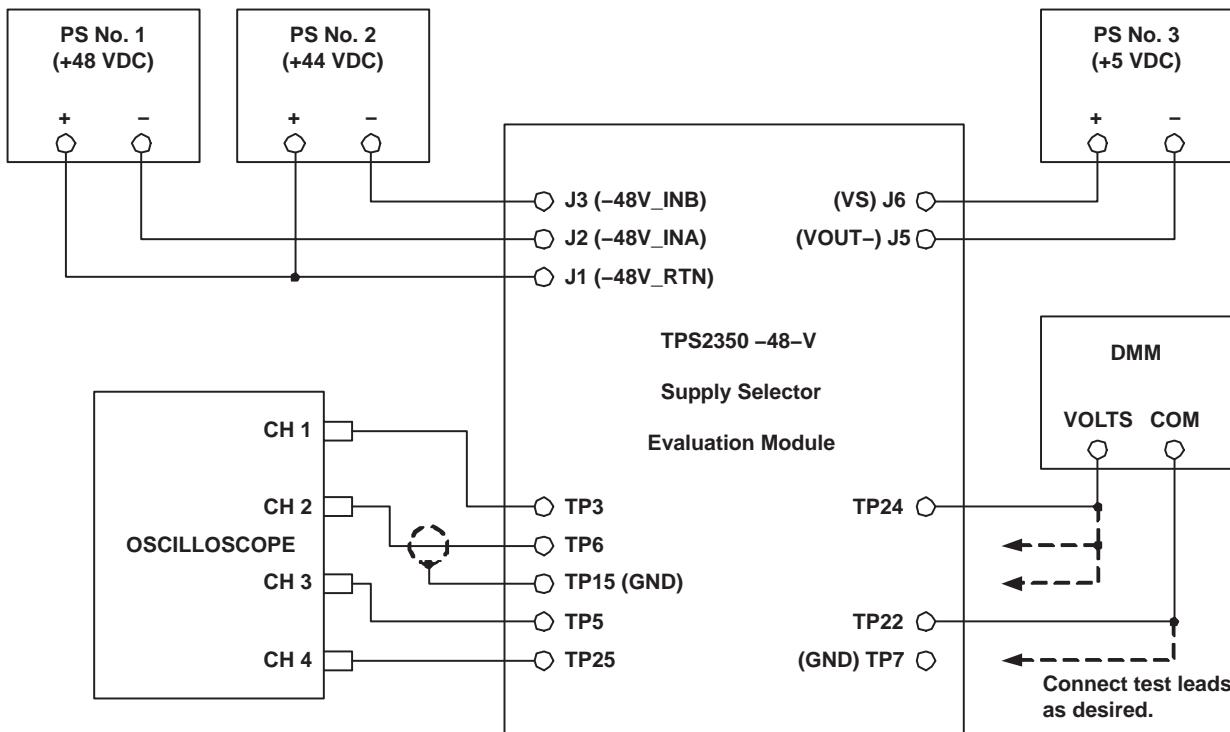
- Power supply, 80 VDC at 3 A minimum, quantity of two required
- Power supply, 5 VDC
- Oscilloscope
- Digital voltmeter (DVM or DMM)

The individual DIP switches of SW1 are labeled numerically on the PCB silkscreen. Throughout this document, references to the DIP switches (e.g., SW1–1) apply to these screened labels, not to any marking on the switch. However, to determine the ON and OFF positions of the switches, use the labeling on the switch body itself.

3.2 Verifying the EVM Operation

The following procedure steps may be used to verify functional operation of the EVM after receipt.

3.2.1 Equipment Setup


On the EVM, place the POWER and ENABLE switches in the OFF position.

Set the DIP switches 1 through 4 of switch SW1 to the ON position.

Turn on power supply number 1 (PS No. 1) and adjust the output for about 48 V. Turn on power supply number 2 (PS No. 2) and adjust the output for about 44 V. Verify the current limit of supplies 1 and 2 is set to allow sourcing of at least 3 A. Turn off the supplies

Turn on power supply number 3 (PS No. 3), and adjust the output to about 5 V. Turn off the power supply.

Connect the EVM and test equipment as shown in Figure 4.

Figure 4. TPS2350 -48-V Supply Selector EVM Equipment Setup

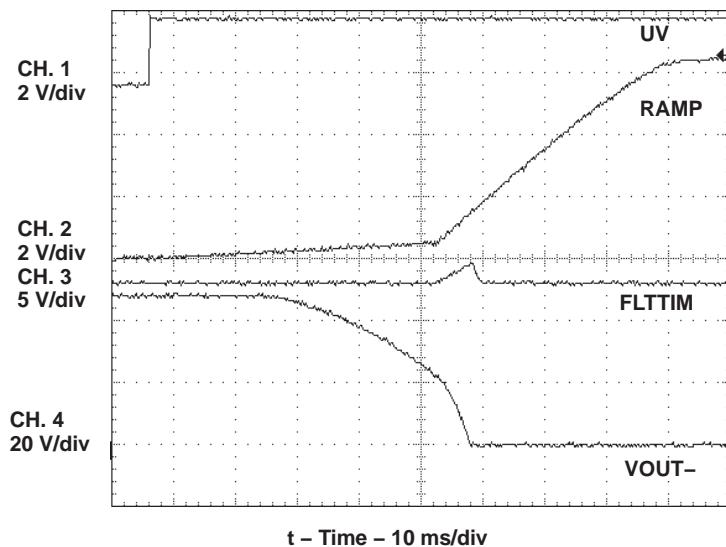
On the oscilloscope, set the channel amplifiers to the following scales:

- CH1: 2 V/div
- CH2: 2 V/div
- CH3: 5 V/div
- CH4: 20 V/div

For easier correlation to the information in this document, the scope trace baselines can be positioned as shown in Figure 5.

Set the scope to trigger on the rising edge of channel 1, at about a 1-V level. Set the scope timebase to 10 ms, and the trigger mode to NORMAL.

3.2.2 Functional Test


Turn on all the power supplies.

On the EVM, place the POWER switch in the ON position. Verify the FAULT LED (D1) remains off. Verify the voltage readings in Table 4 are obtained at the corresponding test points.

Table 4. Test Point Voltages -- Outputs OFF

TEST POINT	REFERENCE	VOLTAGE READING
TP22	TP24/TP25	0 \pm 200 mV
J7	TP24/TP25	250 mV max.

Place the ENABLE switch in the ON position. Verify the FAULT LED (D1) remains off. The oscilloscope should have acquired a sweep similar to that shown in Figure 5.

Figure 5. Load Ramp-Up Waveform

The brief fault timing ramp which is shown in Figure 5 (FLTTIM trace) may or may not be present, depending on the actual values of the timing parameters for the particular board being used. If the load voltage ramps to full input potential during the initial reduced rate ramp period, then fault timing does not initiate.

The DMM can now be used to verify that the voltages shown in Table 5 are present at the test points indicated.

Table 5. Test Point Voltages -- Outputs ON

TEST POINT	REFERENCE	VOLTAGE READING
TP22	TP24/TP25	~ Input Supply Voltage
J7	TP24/TP25	4.93 V min.
TP3	TP7	Approx. 2.13 V
TP4	TP7	Approx. 0.94 V

Leave a meter connected across TP22 and TP24/TP25 (i.e., the VOUT terminals). Decrease the voltage of the PS No. 1 supply to be less than 43.5 V. Verify that as the supply is decreased below this voltage, the VOUT voltage remains at the PS No. 2 potential, about 44 V.

Place either the ENABLE or POWER switch (or both) in the OFF position to remove power from the VOUT terminals.

4 Using the EVM Kit to Evaluate the TPS2350

Procedures similar to the steps of Section 3.2.2 for functional test of the EVM can also be used to continue evaluation of the TPS2350 hot swap controller device. Additional details about the EVM features are provided in this section.

4.1 Supply Connections and Test Points

Supply connections to the EVM should be made to the banana jacks as shown in Figure 4. The two backplane, 48-V supplies (PS No. 1 and PS No. 2 in Figure 4) connect between J1 and J2 and J1 and J3, respectively. The polarity of the circuit is such that the HI or (+) outputs of the supplies connect to J1, -48V_{RTN}. The LO or (-) jacks connect to J2 (-48V_{INA}) and J3 (-48V_{INB}). PCB header J6 (VS) is used to connect an external pull-up source when using the MOD_EN output of the EVM. This supply is referenced to the VOUT- node at J5.

The TPS2350 -48-V hot swap/supply selector EVM contains numerous test points located throughout the circuit for waveform monitoring. A list of the EVM test points and their associated signals is given in Table 6.

Table 6. TPS2350 -48-V Hot Swap/Supply Selector EVM Test Points

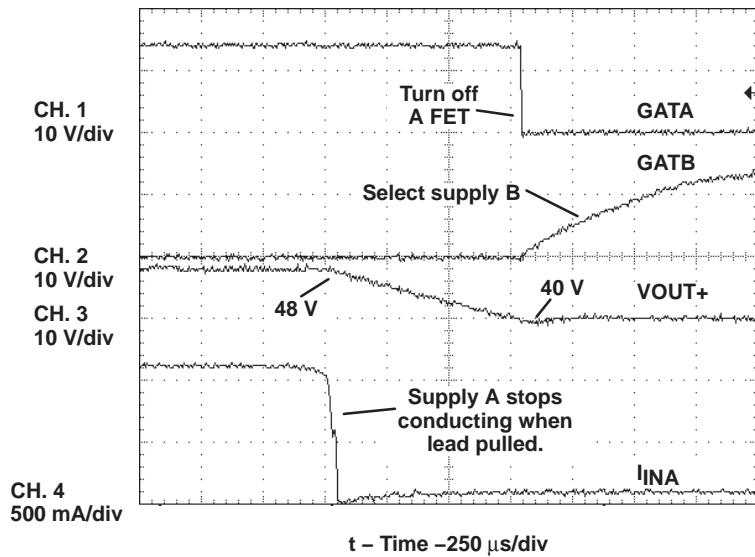
TEST POINT	SIGNAL NAME	DESCRIPTION
TP2	FLT	Load fault output of the TPS2350. On the EVM, this signal drives the red LED.
TP3	UV	Sense input for supply undervoltage detection.
TP4	OV	Sense input for supply overvoltage detection.
TP5	FLTTIM	Fault timing waveform of the TPS2350.
TP6	RAMP	Current ramp control output waveform.
TP7	SOURCE	Common source node of the selection FETs, and reference pin for the TPS2350.
TP8	GATB	Gate drive for the B supply selection FET.
TP9	GATA	Gate drive for the A supply selection FET.
TP10	SNS	Current sense input for the hot swap controller.
TP11	GAT	Gate drive for the hot swap or pass FET Q1.
TP12	PG	Open-drain, active-high indication of a load power-good condition.
TP13	-VINB	Selection comparator voltage sense input for the B-designated supply. On the EVM, this is connected to the -48V _{INB} jack.
TP14	-VINA	Selection comparator voltage sense input for the A-designated supply. On the EVM, this is connected to the -48V _{INA} jack.
TP15	SOURCE	Secondary test point on the TPS2350 reference node (located near the timing capacitors).
TP16	-48V _{RTN}	Backplane side of the high side of input power to the board. This node is common to both supplies.
TP17	VOUT+	Additional supply high side test point on the plug-in side of the POWER switch (S2). This is also the input supply to the TPS2350 and the high-side of the load
TP18		
TP19	-48V _{INA}	Low side input of the A-designated power supply.
TP20		
TP21	-48V _{INB}	Low side input of the B-designated power supply.
TP22		
TP23	VOUT+	High side of switched (load) output power.
TP24		
TP25	VOUT-	Low side of switched (load) output power.

4.2 Load Capacitors

Capacitor patterns C8 and C9 are available on the EVM for installation of components to represent the module input bulk capacitance; i.e., the load capacitance seen by the hot swap interface circuit. As supplied from the factory, the EVM contains a 100- μ F aluminum electrolytic installed at C8. Further customization to approximate the user's application can be done using either C8 or C9. When installing capacitors in these mounting locations, care should be taken to observe the polarity marking on the PCB silkscreen, and to use appropriately rated capacitors for voltage withstand. Generally, telecom applications should use 100-V minimum rated capacitors.

Banana jacks J4 (VOUT+) and J5 (VOUT-) are also connected across the output terminals, in parallel with C8 and C9. These jacks can be used to connect additional loads to the EVM board.

4.3 Supply Selector


The TPS2350 device monitors the input supply voltages at $-48V_{INA}$ and $-48V_{INB}$. Using two external N-channel MOSFETs, it selects the supply of larger magnitude for applying power to the back-end plane (the load). Because of this capability, a TPS2350 circuit can be a lower-loss alternative to diodes in traditional diode-OR telecom applications. On the EVM, the selection FETs are Q2 (for supply A) and Q3 (for supply B).

Hysteresis of the supply comparison is set internally to a nominal 400 mV. In order for the TPS2350 to switch over to the deselected supply, its potential must become 400 mV more negative than the supply currently being used.

The selection function can be exercised under various conditions. The voltage levels of the two supplies can be adjusted relative to each other to generate switching events. The supplies can be turned off and back on using their power switches, or they can even be plugged into and removed from their respective jacks J2 and J3. The selection action can easily be viewed at the gates of the selection FETs, TP9 for the A supply, and TP8 for the B supply. Also, by applying a steady-state load at the output terminals, current probes can be used on the bench supply leads to monitor which supply is delivering power as input conditions are varied. And of course, the load voltage should reflect the magnitude of the selected supply. The scope plot of Figure 6 shows an example of what can be observed using the EVM.

NOTE:

The FET PCB patterns Q4, Q5, Q6, Q7, and certain associated components, are not used on this EVM.

Figure 6. Switching From $-48V_{INA}$ to $-48V_{INB}$ Supply

In the Figure 6 plot, the TPS2350 is switching from the *A* supply to the *B* supply when the initially higher-potential *A* supply lead is rapidly pulled from the input jack. At the time the lead is disconnected, current from that source is interrupted. The bulk capacitor holds up the sense node voltage momentarily (seen here on the VOUT+ trace); however, the 1-A load eventually causes it to decay below the magnitude of the *B* supply, which was 40 V. At this time, the *A*-channel FET gate is rapidly pulled low, and the *B*-channel is turned on.

4.4 Changing the Current Limit Threshold

During power-up of a plug-in card, the TPS2350 limits the peak inrush current drawn by the discharged bulk capacitance. The LCA senses load current as the drop across an external sense resistor. Current is regulated by slewing the gate of the pass FET to maintain the voltage drop at an internally set level, nominally 42 mV. Therefore, the peak current level can be established by selecting the appropriate sense resistor value. On the EVM, this resistor is R5. The default value of R5 is 20 mΩ. To modify the current limit threshold, a new sense resistor value can be determined from Equation 1.

$$R5 = \frac{V_{MAX}}{I_{MAX}} \quad (1)$$

where:

- VMAX is the sense voltage limit, and
- IMAX is the desired current limit threshold.

Using the device minimum value of 34 mV for VMAX along with the required minimum load current will ensure that minimum amount of current can always be supplied to the load. For example, a particular line card is expected to draw a maximum of 2.5 A, when the power bus is at its operating minimum level of –33 V, once the card is powered up and operating normally. For this load characteristic, a sense resistor value less than 34 mV/2.5 A, or 13 mΩ, would be selected. A 10-mΩ resistor is generally the closest standard value readily available; smaller values also work, but with a corresponding increase in the maximum current limit.

4.5 Changing the Inrush Slew Rate

The TPS2350 also features slew rate limiting as current is ramped to charge the load capacitance. The slew rate is easily programmed, once the sense resistor is determined, with a small-value capacitor connected between the RAMP and SOURCE pins. The EVM comes equipped with three preset capacitor values, selectable either individually or in combination by closing the appropriate DIP switches of SW1. The default values of the capacitors, and the corresponding nominal slew rates, are given in Table 7.

Table 7. Supply Selector EVM Default Slew Rates

SW1 DIP	REF DES	INSTALLED VALUE	SLEW RATE (A/s)
1	C1	1000 pF	5000
2	C2	0.01 μF	500
3	C3	0.047 μF	106

The EVM can be used to get an illustration of the relationship between current limit, inrush slew rate, load values, and the circuit's fault timing requirements. With DIP switch SW1–1 only closed, the fastest of the preset slew rates is selected, and only the hard-wired timing capacitor C6 is connected to the TPS2350 controller. However, this is sufficient to allow the bulk capacitor C8 to fully charge, from 0 V, across the full range of input supply voltages, down to –80 V. This can be observed by connecting input power as shown in Figure 4, displaying the VOUT– node on an oscilloscope, and enabling the device.

To observe the controller response to a load that does not charge up as expected (a shorted or otherwise excessive load), set switches SW1–1, SW1–2, and SW1–3 to the ON position. This greatly reduces the inrush (load charging) current slew rate at turn-on, with a corresponding increase in the amount of time needed to successfully charge the intended load. Increase the supply level to about 60 V to 72 V, and again enable the device. In this case, the voltage ramp time is excessively long relative to the programmed fault timer; the controller times out and turns off the load.⁽¹⁾ This can be seen from the illumination of the red LED. (The LED may only flash briefly then turn off, indicating load charging ultimately completed on a successive retry.) If this combination represented the parameters of the target plug-in module, then the timing capacitance of C6 and C4 (SW1–4 closed) would be more appropriate. The intended load, in this case, the 100- μ F capacitor, can again be charged up on the first attempt, for supply values across the input voltage range.

NOTE: (1)

Due to tolerances of various EVM parameters, some units may not fault out under these conditions. Generally, this is due to the fact that the amount of voltage ramping during the reduced-rate turn-on period will vary from device to device. Some units may be able to charge the load almost completely during this period, when fault timing is inhibited. A more severe load fault is needed to view the fault response. Additional capacitance, or even a resistor, can be connected across the VOUT terminals, J4(+) and J5(–) or at C9. If the user is confident the module is operating correctly, the load can also be shorted out to do this demonstration.

The inrush slew rate can be changed, to better match the application requirement, by replacing any capacitor C1, C2 or C3. The PCB patterns are sized for 0805 ceramic chip capacitors. Use equation 2 to calculate the new ramp capacitor, C_{RAMP} , value in microfarads.

$$C_{RAMP} = \frac{11.3}{100 \times R5 \times (di/dt)_{MAX}} \quad (2)$$

where:

- R5 is the selected sense resistor value, in ohms, and
- $(di/dt)_{MAX}$ is the desired maximum slew rate, in amps/second.

4.6 Fault Timing with the TPS2350

Whenever the hot swap controller is limiting current to the load, an on-chip timer is monitoring this operation against an established time limit. The timeout period is generated by the constant-current charging of a capacitor at the FLTTIM pin. If current regulation ceases prior to expiration of the timer, the capacitor is discharged, and normal steady-state operation of the load either starts or resumes. However, if the timer expires, then the pass FET is turned off, disabling power to the load, and the $\overline{\text{FAULT}}$ output is asserted.

On the TPS2350 –48-V hot swap/supply selector EVM, several capacitor patterns are provided for adding to or otherwise modifying the timeout period. Capacitor C6 is hard-wired to the device FLTTIM pin, and provides a minimum fault timer for the default load. C4 and C5 can be switched into the circuit via DIP switches SW1–4 and SW1–5, respectively. The EVM ships from the factory with a 0.1- μF capacitor installed at C4; C5 is not populated for easier subsequent user modification as required.

If the target application requires fault timing other than provided by the default EVM setup, a new value of timing capacitor can be calculated from equation 3. When selecting from the readily available capacitor values for the equation 3 result, default to a slightly larger, rather than smaller, capacitor.

$$C_{\text{FLT}} = \frac{54 \times t_{\text{FLT}}}{3.75} \quad (3)$$

where:

- C_{FLT} is the calculated value in microfarads, and
- t_{FLT} is the desired timeout period in seconds

4.7 Programming the UVLO and OVLO Thresholds and Hysteresis

The UV and OV pins can be used to set the circuit undervoltage and overvoltage thresholds (V_{UV} and V_{OV} , respectively). When the input supply is below V_{UV} or above V_{OV} , the GAT pin is held low, disconnecting power from the load, and the PG output is deasserted. When input voltage is within the UV/OV window, the GAT drive is enabled, assuming all other input conditions are valid for turn-on.

Threshold hysteresis is also externally programmable. Internal current sources are switched to the UV and OV pins whenever the corresponding input voltage exceeds the nominal 1.4-V reference.

On the EVM, the V_{UV} and V_{OV} thresholds are individually programmed via the three-resistor divider R1, R2, and R3 (refer to Figure 2). The factory-installed resistor values result in the following nominal voltage thresholds.

Table 8. Nominal UVLO and OVLO settings.

PARAMETER	DESCRIPTION	VALUE (V)
$V_{\text{UV_L}}$	UVLO threshold, supply low ($V_{\text{IN}} < V_{\text{UV}}$)	32.8
$V_{\text{UV_H}}$	UVLO threshold, supply high ($V_{\text{IN}} > V_{\text{UV}}$)	30.8
$V_{\text{OV_L}}$	OVLO threshold, supply low ($V_{\text{IN}} < V_{\text{OV}}$)	72.6
$V_{\text{OV_H}}$	OVLO threshold, supply high ($V_{\text{IN}} > V_{\text{OV}}$)	70.5

The thresholds are easily modified by changing the resistor values. When the desired trip voltages and the UV hysteresis have been established for the protected load, new values are determined as follows. Generally, the process is simplest by first selecting the top leg of the divider (R1) needed to obtain the desired hysteresis. This value is calculated from equation 4.

$$R1 = \frac{V_{HYS_UV}}{10 \mu A} \quad (4)$$

where V_{HYS_UV} is the desired amount of undervoltage hysteresis.

Once a value for R1 is selected, it is used to calculate R2 and R3 using equations 5 and 6.

$$R2 = \frac{1.4 \times R1}{(V_{UV_L} - 1.4)} \times \left[1 - \frac{V_{UV_L}}{(V_{OV_L} + 10^{-5} \times R1)} \right] \quad (5)$$

$$R3 = \frac{1.4 \times R1}{(V_{UV_L} - 1.4)} \times \left[\frac{V_{UV_L}}{(V_{OV_L} + 10^{-5} \times R1)} \right] \quad (6)$$

where:

- V_{UV_L} is the UVLO threshold when the input supply is low; i.e., less than V_{UV} , and
- V_{OV_L} is the OVLO threshold when the input supply is low; i.e., less than V_{OV}

4.8 TPS2350 Powergood Output (PG)

The supply selector EVM features two nodes to access the powergood status generated by the TPS2350. For simply monitoring, for example with a scope probe, the actual output signal itself is available at test point TP12.

The MOD_EN output at J7 demonstrates an isolated signal interface using an opto device. An example application of such a signal is to drive the enable input of downstream converters. As such, this output is referenced to the VOUT- node, as this would be the low side of input power to the brick. The EVM schematic shows the circuit details. The MOD_EN assertion level is active-high. The use of this signal requires a pull-up source at the VS input, J6. See Tables 2 and 3 for the requirements of the VS supply.

STANDARD TERMS FOR EVALUATION MODULES

1. *Delivery:* TI delivers TI evaluation boards, kits, or modules, including any accompanying demonstration software, components, and/or documentation which may be provided together or separately (collectively, an "EVM" or "EVMs") to the User ("User") in accordance with the terms set forth herein. User's acceptance of the EVM is expressly subject to the following terms.
 - 1.1 EVMs are intended solely for product or software developers for use in a research and development setting to facilitate feasibility evaluation, experimentation, or scientific analysis of TI semiconductors products. EVMs have no direct function and are not finished products. EVMs shall not be directly or indirectly assembled as a part or subassembly in any finished product. For clarification, any software or software tools provided with the EVM ("Software") shall not be subject to the terms and conditions set forth herein but rather shall be subject to the applicable terms that accompany such Software
 - 1.2 EVMs are not intended for consumer or household use. EVMs may not be sold, sublicensed, leased, rented, loaned, assigned, or otherwise distributed for commercial purposes by Users, in whole or in part, or used in any finished product or production system.
- 2 *Limited Warranty and Related Remedies/Disclaimers:*
 - 2.1 These terms do not apply to Software. The warranty, if any, for Software is covered in the applicable Software License Agreement.
 - 2.2 TI warrants that the TI EVM will conform to TI's published specifications for ninety (90) days after the date TI delivers such EVM to User. Notwithstanding the foregoing, TI shall not be liable for a nonconforming EVM if (a) the nonconformity was caused by neglect, misuse or mistreatment by an entity other than TI, including improper installation or testing, or for any EVMs that have been altered or modified in any way by an entity other than TI, (b) the nonconformity resulted from User's design, specifications or instructions for such EVMs or improper system design, or (c) User has not paid on time. Testing and other quality control techniques are used to the extent TI deems necessary. TI does not test all parameters of each EVM. User's claims against TI under this Section 2 are void if User fails to notify TI of any apparent defects in the EVMs within ten (10) business days after delivery, or of any hidden defects with ten (10) business days after the defect has been detected.
 - 2.3 TI's sole liability shall be at its option to repair or replace EVMs that fail to conform to the warranty set forth above, or credit User's account for such EVM. TI's liability under this warranty shall be limited to EVMs that are returned during the warranty period to the address designated by TI and that are determined by TI not to conform to such warranty. If TI elects to repair or replace such EVM, TI shall have a reasonable time to repair such EVM or provide replacements. Repaired EVMs shall be warranted for the remainder of the original warranty period. Replaced EVMs shall be warranted for a new full ninety (90) day warranty period.

WARNING

Evaluation Kits are intended solely for use by technically qualified, professional electronics experts who are familiar with the dangers and application risks associated with handling electrical mechanical components, systems, and subsystems.

User shall operate the Evaluation Kit within TI's recommended guidelines and any applicable legal or environmental requirements as well as reasonable and customary safeguards. Failure to set up and/or operate the Evaluation Kit within TI's recommended guidelines may result in personal injury or death or property damage. Proper set up entails following TI's instructions for electrical ratings of interface circuits such as input, output and electrical loads.

NOTE:

EXPOSURE TO ELECTROSTATIC DISCHARGE (ESD) MAY CAUSE DEGRADATION OR FAILURE OF THE EVALUATION KIT; TI RECOMMENDS STORAGE OF THE EVALUATION KIT IN A PROTECTIVE ESD BAG.

3 Regulatory Notices:

3.1 United States

3.1.1 Notice applicable to EVMs not FCC-Approved:

FCC NOTICE: This kit is designed to allow product developers to evaluate electronic components, circuitry, or software associated with the kit to determine whether to incorporate such items in a finished product and software developers to write software applications for use with the end product. This kit is not a finished product and when assembled may not be resold or otherwise marketed unless all required FCC equipment authorizations are first obtained. Operation is subject to the condition that this product not cause harmful interference to licensed radio stations and that this product accept harmful interference. Unless the assembled kit is designed to operate under part 15, part 18 or part 95 of this chapter, the operator of the kit must operate under the authority of an FCC license holder or must secure an experimental authorization under part 5 of this chapter.

3.1.2 For EVMs annotated as FCC – FEDERAL COMMUNICATIONS COMMISSION Part 15 Compliant:

CAUTION

This device complies with part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) This device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

Changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment.

FCC Interference Statement for Class A EVM devices

NOTE: This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful interference in which case the user will be required to correct the interference at his own expense.

FCC Interference Statement for Class B EVM devices

NOTE: This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures:

- Reorient or relocate the receiving antenna.
- Increase the separation between the equipment and receiver.
- Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.
- Consult the dealer or an experienced radio/TV technician for help.

3.2 Canada

3.2.1 For EVMs issued with an Industry Canada Certificate of Conformance to RSS-210 or RSS-247

Concerning EVMs Including Radio Transmitters:

This device complies with Industry Canada license-exempt RSSs. Operation is subject to the following two conditions:

(1) this device may not cause interference, and (2) this device must accept any interference, including interference that may cause undesired operation of the device.

Concernant les EVMs avec appareils radio:

Le présent appareil est conforme aux CNR d'Industrie Canada applicables aux appareils radio exempts de licence. L'exploitation est autorisée aux deux conditions suivantes: (1) l'appareil ne doit pas produire de brouillage, et (2) l'utilisateur de l'appareil doit accepter tout brouillage radioélectrique subi, même si le brouillage est susceptible d'en compromettre le fonctionnement.

Concerning EVMs Including Detachable Antennas:

Under Industry Canada regulations, this radio transmitter may only operate using an antenna of a type and maximum (or lesser) gain approved for the transmitter by Industry Canada. To reduce potential radio interference to other users, the antenna type and its gain should be so chosen that the equivalent isotropically radiated power (e.i.r.p.) is not more than that necessary for successful communication. This radio transmitter has been approved by Industry Canada to operate with the antenna types listed in the user guide with the maximum permissible gain and required antenna impedance for each antenna type indicated. Antenna types not included in this list, having a gain greater than the maximum gain indicated for that type, are strictly prohibited for use with this device.

Concernant les EVMs avec antennes détachables

Conformément à la réglementation d'Industrie Canada, le présent émetteur radio peut fonctionner avec une antenne d'un type et d'un gain maximal (ou inférieur) approuvé pour l'émetteur par Industrie Canada. Dans le but de réduire les risques de brouillage radioélectrique à l'intention des autres utilisateurs, il faut choisir le type d'antenne et son gain de sorte que la puissance isotope rayonnée équivalente (p.i.r.e.) ne dépasse pas l'intensité nécessaire à l'établissement d'une communication satisfaisante. Le présent émetteur radio a été approuvé par Industrie Canada pour fonctionner avec les types d'antenne énumérés dans le manuel d'usage et ayant un gain admissible maximal et l'impédance requise pour chaque type d'antenne. Les types d'antenne non inclus dans cette liste, ou dont le gain est supérieur au gain maximal indiqué, sont strictement interdits pour l'exploitation de l'émetteur

3.3 Japan

3.3.1 *Notice for EVMs delivered in Japan:* Please see http://www.tij.co.jp/lsts/ti_ja/general/eStore/notice_01.page 日本国内に輸入される評価用キット、ボードについては、次のところをご覧ください。

<https://www.ti.com/ja-jp/legal/notice-for-evaluation-kits-delivered-in-japan.html>

3.3.2 *Notice for Users of EVMs Considered "Radio Frequency Products" in Japan:* EVMs entering Japan may not be certified by TI as conforming to Technical Regulations of Radio Law of Japan.

If User uses EVMs in Japan, not certified to Technical Regulations of Radio Law of Japan, User is required to follow the instructions set forth by Radio Law of Japan, which includes, but is not limited to, the instructions below with respect to EVMs (which for the avoidance of doubt are stated strictly for convenience and should be verified by User):

1. Use EVMs in a shielded room or any other test facility as defined in the notification #173 issued by Ministry of Internal Affairs and Communications on March 28, 2006, based on Sub-section 1.1 of Article 6 of the Ministry's Rule for Enforcement of Radio Law of Japan,
2. Use EVMs only after User obtains the license of Test Radio Station as provided in Radio Law of Japan with respect to EVMs, or
3. Use of EVMs only after User obtains the Technical Regulations Conformity Certification as provided in Radio Law of Japan with respect to EVMs. Also, do not transfer EVMs, unless User gives the same notice above to the transferee. Please note that if User does not follow the instructions above, User will be subject to penalties of Radio Law of Japan.

【無線電波を送信する製品の開発キットをお使いになる際の注意事項】開発キットの中には技術基準適合証明を受けていないものがあります。技術適合証明を受けていないものご使用に際しては、電波法遵守のため、以下のいずれかの措置を取っていただく必要がありますのでご注意ください。

1. 電波法施行規則第6条第1項第1号に基づく平成18年3月28日総務省告示第173号で定められた電波暗室等の試験設備でご使用いただく。
2. 実験局の免許を取得後ご使用いただく。
3. 技術基準適合証明を取得後ご使用いただく。

なお、本製品は、上記の「ご使用にあたっての注意」を譲渡先、移転先に通知しない限り、譲渡、移転できないものとします。

上記を遵守頂けない場合は、電波法の罰則が適用される可能性があることをご留意ください。日本テキサス・インスツルメンツ株式会社

東京都新宿区西新宿6丁目24番1号

西新宿三井ビル

3.3.3 *Notice for EVMs for Power Line Communication:* Please see http://www.tij.co.jp/lsts/ti_ja/general/eStore/notice_02.page
電力線搬送波通信についての開発キットをお使いになる際の注意事項については、次のところをご覧ください。<https://www.ti.com/ja-jp/legal/notice-for-evaluation-kits-for-power-line-communication.html>

3.4 European Union

3.4.1 *For EVMs subject to EU Directive 2014/30/EU (Electromagnetic Compatibility Directive):*

This is a class A product intended for use in environments other than domestic environments that are connected to a low-voltage power-supply network that supplies buildings used for domestic purposes. In a domestic environment this product may cause radio interference in which case the user may be required to take adequate measures.

4 *EVM Use Restrictions and Warnings:*

4.1 EVMS ARE NOT FOR USE IN FUNCTIONAL SAFETY AND/OR SAFETY CRITICAL EVALUATIONS, INCLUDING BUT NOT LIMITED TO EVALUATIONS OF LIFE SUPPORT APPLICATIONS.

4.2 User must read and apply the user guide and other available documentation provided by TI regarding the EVM prior to handling or using the EVM, including without limitation any warning or restriction notices. The notices contain important safety information related to, for example, temperatures and voltages.

4.3 *Safety-Related Warnings and Restrictions:*

4.3.1 User shall operate the EVM within TI's recommended specifications and environmental considerations stated in the user guide, other available documentation provided by TI, and any other applicable requirements and employ reasonable and customary safeguards. Exceeding the specified performance ratings and specifications (including but not limited to input and output voltage, current, power, and environmental ranges) for the EVM may cause personal injury or death, or property damage. If there are questions concerning performance ratings and specifications, User should contact a TI field representative prior to connecting interface electronics including input power and intended loads. Any loads applied outside of the specified output range may also result in unintended and/or inaccurate operation and/or possible permanent damage to the EVM and/or interface electronics. Please consult the EVM user guide prior to connecting any load to the EVM output. If there is uncertainty as to the load specification, please contact a TI field representative. During normal operation, even with the inputs and outputs kept within the specified allowable ranges, some circuit components may have elevated case temperatures. These components include but are not limited to linear regulators, switching transistors, pass transistors, current sense resistors, and heat sinks, which can be identified using the information in the associated documentation. When working with the EVM, please be aware that the EVM may become very warm.

4.3.2 EVMs are intended solely for use by technically qualified, professional electronics experts who are familiar with the dangers and application risks associated with handling electrical mechanical components, systems, and subsystems. User assumes all responsibility and liability for proper and safe handling and use of the EVM by User or its employees, affiliates, contractors or designees. User assumes all responsibility and liability to ensure that any interfaces (electronic and/or mechanical) between the EVM and any human body are designed with suitable isolation and means to safely limit accessible leakage currents to minimize the risk of electrical shock hazard. User assumes all responsibility and liability for any improper or unsafe handling or use of the EVM by User or its employees, affiliates, contractors or designees.

4.4 User assumes all responsibility and liability to determine whether the EVM is subject to any applicable international, federal, state, or local laws and regulations related to User's handling and use of the EVM and, if applicable, User assumes all responsibility and liability for compliance in all respects with such laws and regulations. User assumes all responsibility and liability for proper disposal and recycling of the EVM consistent with all applicable international, federal, state, and local requirements.

5. *Accuracy of Information:* To the extent TI provides information on the availability and function of EVMs, TI attempts to be as accurate as possible. However, TI does not warrant the accuracy of EVM descriptions, EVM availability or other information on its websites as accurate, complete, reliable, current, or error-free.

6. *Disclaimers:*

6.1 EXCEPT AS SET FORTH ABOVE, EVMS AND ANY MATERIALS PROVIDED WITH THE EVM (INCLUDING, BUT NOT LIMITED TO, REFERENCE DESIGNS AND THE DESIGN OF THE EVM ITSELF) ARE PROVIDED "AS IS" AND "WITH ALL FAULTS." TI DISCLAIMS ALL OTHER WARRANTIES, EXPRESS OR IMPLIED, REGARDING SUCH ITEMS, INCLUDING BUT NOT LIMITED TO ANY EPIDEMIC FAILURE WARRANTY OR IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF ANY THIRD PARTY PATENTS, COPYRIGHTS, TRADE SECRETS OR OTHER INTELLECTUAL PROPERTY RIGHTS.

6.2 EXCEPT FOR THE LIMITED RIGHT TO USE THE EVM SET FORTH HEREIN, NOTHING IN THESE TERMS SHALL BE CONSTRUED AS GRANTING OR CONFERRING ANY RIGHTS BY LICENSE, PATENT, OR ANY OTHER INDUSTRIAL OR INTELLECTUAL PROPERTY RIGHT OF TI, ITS SUPPLIERS/LICENSORS OR ANY OTHER THIRD PARTY, TO USE THE EVM IN ANY FINISHED END-USER OR READY-TO-USE FINAL PRODUCT, OR FOR ANY INVENTION, DISCOVERY OR IMPROVEMENT, REGARDLESS OF WHEN MADE, CONCEIVED OR ACQUIRED.

7. *USER'S INDEMNITY OBLIGATIONS AND REPRESENTATIONS.* USER WILL DEFEND, INDEMNIFY AND HOLD TI, ITS LICENSORS AND THEIR REPRESENTATIVES HARMLESS FROM AND AGAINST ANY AND ALL CLAIMS, DAMAGES, LOSSES, EXPENSES, COSTS AND LIABILITIES (COLLECTIVELY, "CLAIMS") ARISING OUT OF OR IN CONNECTION WITH ANY HANDLING OR USE OF THE EVM THAT IS NOT IN ACCORDANCE WITH THESE TERMS. THIS OBLIGATION SHALL APPLY WHETHER CLAIMS ARISE UNDER STATUTE, REGULATION, OR THE LAW OF TORT, CONTRACT OR ANY OTHER LEGAL THEORY, AND EVEN IF THE EVM FAILS TO PERFORM AS DESCRIBED OR EXPECTED.

8. *Limitations on Damages and Liability:*

8.1 *General Limitations.* IN NO EVENT SHALL TI BE LIABLE FOR ANY SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF THESE TERMS OR THE USE OF THE EVMS, REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. EXCLUDED DAMAGES INCLUDE, BUT ARE NOT LIMITED TO, COST OF REMOVAL OR REINSTALLATION, ANCILLARY COSTS TO THE PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES, RETESTING, OUTSIDE COMPUTER TIME, LABOR COSTS, LOSS OF GOODWILL, LOSS OF PROFITS, LOSS OF SAVINGS, LOSS OF USE, LOSS OF DATA, OR BUSINESS INTERRUPTION. NO CLAIM, SUIT OR ACTION SHALL BE BROUGHT AGAINST TI MORE THAN TWELVE (12) MONTHS AFTER THE EVENT THAT GAVE RISE TO THE CAUSE OF ACTION HAS OCCURRED.

8.2 *Specific Limitations.* IN NO EVENT SHALL TI'S AGGREGATE LIABILITY FROM ANY USE OF AN EVM PROVIDED HEREUNDER, INCLUDING FROM ANY WARRANTY, INDEMNITY OR OTHER OBLIGATION ARISING OUT OF OR IN CONNECTION WITH THESE TERMS, EXCEED THE TOTAL AMOUNT PAID TO TI BY USER FOR THE PARTICULAR EVM(S) AT ISSUE DURING THE PRIOR TWELVE (12) MONTHS WITH RESPECT TO WHICH LOSSES OR DAMAGES ARE CLAIMED. THE EXISTENCE OF MORE THAN ONE CLAIM SHALL NOT ENLARGE OR EXTEND THIS LIMIT.

9. *Return Policy.* Except as otherwise provided, TI does not offer any refunds, returns, or exchanges. Furthermore, no return of EVM(s) will be accepted if the package has been opened and no return of the EVM(s) will be accepted if they are damaged or otherwise not in a resalable condition. If User feels it has been incorrectly charged for the EVM(s) it ordered or that delivery violates the applicable order, User should contact TI. All refunds will be made in full within thirty (30) working days from the return of the components(s), excluding any postage or packaging costs.

10. *Governing Law:* These terms and conditions shall be governed by and interpreted in accordance with the laws of the State of Texas, without reference to conflict-of-laws principles. User agrees that non-exclusive jurisdiction for any dispute arising out of or relating to these terms and conditions lies within courts located in the State of Texas and consents to venue in Dallas County, Texas. Notwithstanding the foregoing, any judgment may be enforced in any United States or foreign court, and TI may seek injunctive relief in any United States or foreign court.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2023, Texas Instruments Incorporated

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you fully indemnify TI and its representatives against any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to [TI's Terms of Sale](#), [TI's General Quality Guidelines](#), or other applicable terms available either on [ti.com](#) or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products. Unless TI explicitly designates a product as custom or customer-specified, TI products are standard, catalog, general purpose devices.

TI objects to and rejects any additional or different terms you may propose.

Copyright © 2026, Texas Instruments Incorporated

Last updated 10/2025