

bq24085/6/7/8 Evaluation Module

1 Introduction

This user's guide describes the bq24085/6/7/8 evaluation module (EVM) that provides a convenient method for evaluating the performance of a charge management solution for portable applications using the bq24085/6/7/8 product family. The charger is designed to deliver up to 750 mA of continuous charge current for single-cell Li-Ion or Li-polymer applications using a DC power supply.

1.1 **Background**

The bq24085/6/7/8 series are highly integrated Li-Ion and Li-polymer linear chargers, targeted at space-limited portable applications. The bq24085/6/7/8 series offers a variety of safety features and functional options, while still implementing a complete charging system in a small package. The battery is charged in three phases: conditioning, constant or thermally regulated current, and constant voltage. Charge is terminated based on minimum current. An internal programmable charge timer provides a backup safety feature for charge termination and is dynamically adjusted during the thermal regulation phase. The bq24085/6/7/8 automatically re-starts the charge if the battery voltage falls below an internal threshold; sleep mode is set when the external input supply is removed. Multiple versions of this device family enable easy design of the bq24085/6/7/8 in cradle chargers or in the end equipment, while using low-cost or high-end AC adapters.

1.2 **Performance Specification Summary**

Table 1 and the accompanying table note gives the EVM performance specifications and qualifications.

Table 1. Performance Specification Summary

SPECIFICATION	TEST CONDITIONS	MIN	TYP	MAX	UNITS
Input DC Voltage, $V_{I(DC)}$		$V_{REG} + 0.5$	5	12 ⁽¹⁾	Volts
Battery Charge Current, $I_{O(CHG)}$				1 ⁽¹⁾	Amperes
Power Dissipation	$(V_{(DC+)} - V_{(BAT+)}) \times I_{(CHG)}$			1.5	Watts

(1)

- This maximum recommended IC input voltage is 16.5 V. The IC has an OVP (overvoltage protection) input circuit that disables the charging circuit if the threshold is exceeded. Most IC selections are set for 6.5 V, but some are set as high as 12 V (see [SLUS784](#) data sheet). The EVM can handle an input voltage up to the recommended maximum of 16.5 V, but the IC will shut down due to the internal voltage protection.
- It is recommended that in normal operation the IC be designed and run below the thermal regulation junction temperature of 125°C. The thermal loop can run continuously without any issues, but the suggested thermal loop operational use is for more harsh environments where the ambient temperature is high (for example, in an automobile during the summer) or with an incorrect adaptor with a higher input voltage.
- For typical input and ambient conditions with the PowerPAD™ tied to a copper plane, one can expect 1.5 W of heat dissipation prior to the thermal loop reducing the current. $P_{dissic} = I_{CHG} \times (V_{DC+} - V_{BAT+})$. For the worst-case, steady-state thermal condition, $V_{BAT+} = 3.4$ VDC (the battery when transitioning from precharge to fast charge reaches a steady-state value after approximately 2 minutes). If the thermal regulation limit of 125°C is reached, then the charging current is adjusted lower.

2 Test Summary

This section describes:

- [Input/Output and Jumper Connections](#)
- [Test Procedure Using Single Cell Li-ion Battery](#)
- [Alternative Test Procedures \(Without Battery\)](#)
- [Required Equipment](#)
- [Test Equipment Setup](#)
- [Test Procedure](#)

2.1 *Input/Output and Jumper Connections*

The bq24085/6/7/8 EVM board requires a 5-VDC, 1-A power source to provide input power and a single-cell Li-ion or Li-polymer battery pack. The test setup connections and jumper setting selections are configured for a stand-alone evaluation but can be changed to interface with external hardware such as a microcontroller.

Table 2. I/O and Jumper Connections

Jack	Connect To:
J1-DC+	Power supply positive, preset to 5 VDC, 1-A current limit.
J1-DC-	Power supply ground
J2-BAT+	Positive battery pack terminal
J2-BAT-	Negative battery pack terminal
J2-TS	NC
J2-BAT-	NC
J3-STAT1	External hardware if J4-EXT is jumpered (Not jumpered from factory)
J3-STAT2	External hardware if J5-EXT is jumpered (Not jumpered from factory)
J3-DC-	Return for J3 signals
J3-PG	External hardware if J6-EXT if jumpered (Not jumpered from factory)
JMP1 (Jumper)	LED connection
JMP2 (Jumper)	LED connection
JMP3 (Jumper)	LED connection (bq24085, bq24086, and bq24088). \overline{CE} - without jumper defaults low - Charge Enable, with Jumper - Charge Disable
JMP4 (Jumper)	TMR enable with jumper installed

2.2 *Test Procedure Using Single-cell Li-ion Battery*

Set up the evaluation board as previously described in [Table 2](#), making the necessary I/O connections and jumper selections. Prior to test and evaluation, it is important to verify that the maximum IC power dissipation ($P_{(MAX)} = 1.5$ W) is not exceeded.

1. Turn on the power supply, which was preset to 5 VDC, and 1 A for the current-limit setting.
2. The bq24085/6/7/8 enters preconditioning mode if the battery is below the $V_{(LOWV)}$ threshold. In this mode, the bq24085/6/7/8 precharges the battery with a low current (typically $IO(CHG) / 10 = 0.4A / 10 = 40$ mA) until the battery voltage reaches the $V_{(LOWV)}$ threshold or until the precharge timer expires. If the timer expires, then the charge current is terminated and the bq24085/6/7/8 enters fault mode. Both LEDs turn off when in fault mode. Toggling input power or battery replacement resets fault mode.
3. Once the battery voltage is above the $V_{(LOWV)}$ threshold, the battery enters fast-charge mode. This EVM is programmed for 0.4 A of fast-charging current.
4. Once the battery reaches voltage regulation (4.2 V), the current tapers down as the battery reaches its full capacity.
5. The battery remains at the fast charge mode until either the charge timer expires or the charge termination current threshold is reached.

6. Once the charge terminates, J7 (TMR jumper) can be removed, putting the IC in LDO mode, and the charger should turn on and regulate at 4.2 V or in constant current mode if the battery voltage drops below 4.2 V. Replacing the jumper allows the IC to terminate properly.

Note: Loads across the battery can affect termination.

7. If the battery discharges to the recharge threshold, the charger starts fast charging.

2.3 Alternative Test Procedures (Without Battery)

This are alternative methods of testing the EVM without a battery. These alternative test procedures include:

- Four Quadrant Power Supply (Sinks or Source Current)
- Large Capacitor
- Dynamic Load Board

Because of the battery detection circuit, *it is difficult to test the different charge phases without a battery* (using just resistors); the algorithm sinks and sources current and applies precharge and fast-charge current depending on the mode it is in. Applying a load that would keep the voltage at 3.5 V (3.5 V/0.7 A) would pull the output into precharge mode and keep it there during the battery detection algorithm, which always occurs when the output is discharged to the refresh threshold. Once in precharge mode, a load sufficient to allow the capacitor to charge to $V_{(lowV)}$ would allow the output to jump to voltage regulation once the 0.7-A fast charge function is activated.

2.3.1 Four Quadrant Power Supply (Sinks or Source Current)

A source meter that can sink current can easily be adjusted to test each mode.

2.3.2 Large Capacitor

To briefly see each mode on a scope, connect a 1 mF capacitor in parallel with a 20 k Ω resistor on the output to observe the power up and cycling between voltage regulation and fast charge via the refresh threshold.

2.3.3 Dynamic Load Board

The circuit is adjusted to work with the displayed parts and their inherent thresholds. The sequence of the test procedure is important due to the active battery detection circuit, refresh feature, precharge, and fast-charge current levels (switching the load in and out in different modes has different results). No damage should occur, but one might get different results than anticipated if the procedure is altered.

Test Summary

2.4 Required Equipment

- Power Source: Current-limited 5-V laboratory power supply with its current limit set to $1\text{ A} \pm 0.1\text{ A}$
- Two Fluke 75 digital multimeters (equivalent equipment or better)
- Oscilloscope – TDS220 or better
- Load test board shown in Figure 1

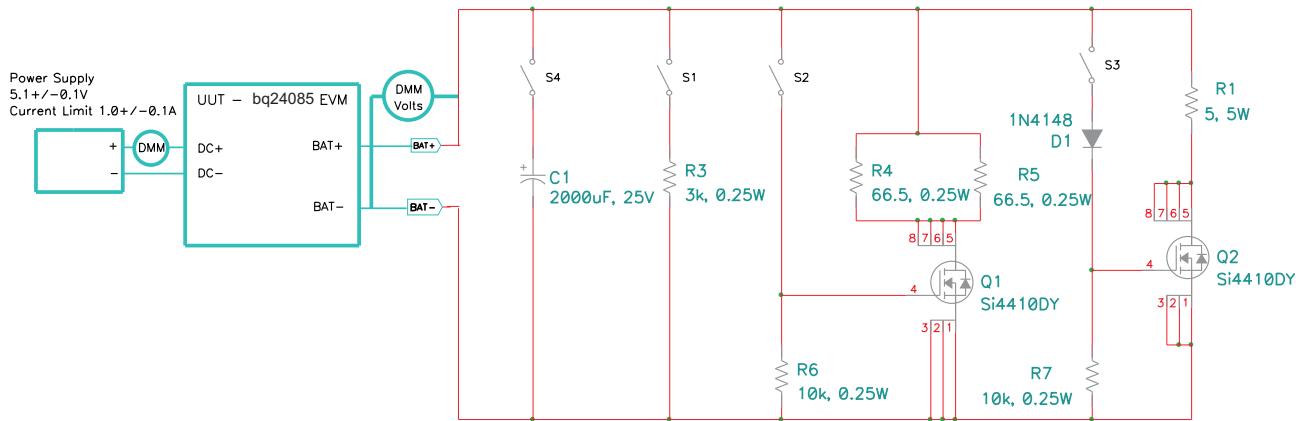
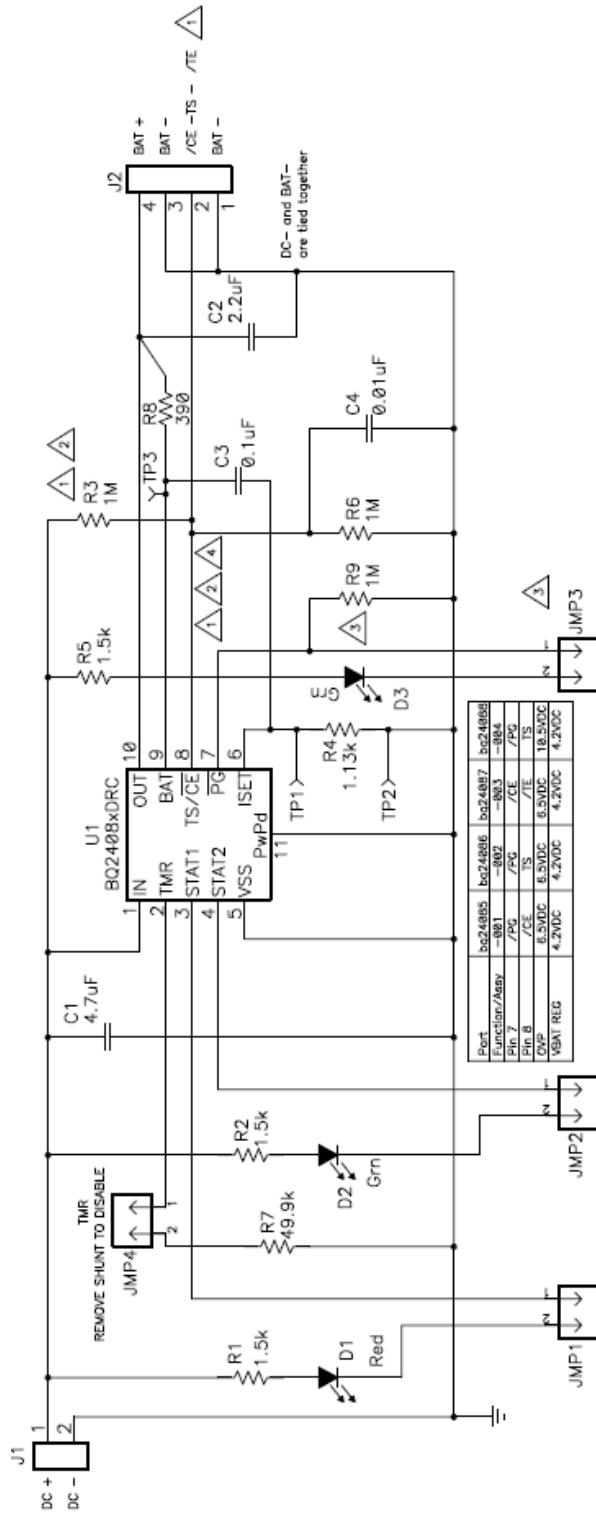


Figure 1. Load Test Board

2.5 Test Equipment Setup


- Connect the load board to the BAT+ and BAT- terminals. Set SW1 through SW4 in the ON position.
- Connect a voltage meter to the BAT+/BAT- output to monitor the output voltage range (0 to 5 V).
- Set the lab supply for $5.1\text{ V} \pm 0.1\text{ VDC}$ and a $1.0 \pm 0.1\text{ A}$ current limit.
- Turn off supply.
- Connect the source supply to a current meter and to J1, noting polarity (may use an internal source current meter, if it has 5% or better accuracy).

2.6 Test Procedure

- Ensure that all **Test Equipment Setup** steps are performed. Switches should be in the ON position and power source set to $5.1\text{ V} \pm 0.1\text{ VDC}$.
 - bq24085 and bq24086**—place shunts on pins 1 and 2 for jumpers JMP1, JMP2, and JMP3, JMP4.
 - bq24087**—place shunts on pins 1 and 2 for jumpers JMP1, JMP2, and JMP4. For JMP3, place shunt on just one pin (do not short the pins).
- Turn on the power source.
- Verify output voltage, BAT+, charges up to between 2.5 V to 2.9 V and the red STAT1 LED (D1) and green STAT2 LED light (all dash #s).
- Verify the green PG LED (D3) lights for bq24085-001 and bq24086-002.
- For bq24085 and bq24087, verify that J2-2 with respect to ground is less than 0.3 volts.
- For bq24085, apply input voltage, J1-1 (+5 V) to J2-2, verify that charging stops ($I_{in} \text{ or } I_{bat} < 30\text{ mA}$). Remove 5 V from J2-2.
- For bq24087, apply input voltage, J1-1 (+5 V) to J2-2, verify that charging continues. Remove 5 V from J2-2.
- For bq24087, apply shunt across pins 1 and 2 of JMP3, verify that charging stops ($I_{in} \text{ or } I_{bat} < 30\text{ mA}$) and STAT1 (D1) and STAT2 (D2) LEDs turn off. Remove JMP3 shunt and place on just one pin.
- For bq24086, verify that J2-2 with respect to ground is between 2 V and 3 V.
- Adjust the Input Voltage to $7.0 \pm 0.1\text{ V}$. Verify charging stops ($I_{in} \text{ or } I_{bat} < 30\text{ mA}$) stops for bq24085, bq24086, and bq24087, plus continues (no change) for bq24088.

Note: The bq24088 charge current may cycle on and off due to thermal cutoff. This is normal.

11. Open SW2 switch and close SW2 switch. Verify the green LED STAT2 (D2) turned off.
12. Verify output voltage, BAT+, settles between 3.1 V and 3.9 V.
13. Verify that the input current is between 0.3 A and 0.55 A.
14. Open SW3 switch.
15. Verify that the input current is between 100 mA and 150 mA.
16. Verify the output voltage, BAT+, is between 4.15 VDC and 4.25 VDC.
17. Open SW2 switch.
18. Verify, with a scope (250 ms/div, 1 V/div), that output, BAT+, charges and discharges between the maximum value of 4.5 V and minimum value of 3 V (smaller range is typical 3.6 to 4.3), with a period between 550ms and 850ms.
19. Verify that the LEDs flash between RED (D1) and GREEN (D2, mostly on green).
20. For bq24085 and bq24086, remove shunt JMP4 and verify that BAT+ is between 4.15 VDC and 4.25 VDC, plus the red LED (D1) lights.
21. For bq24085 and bq24086, install JMP4 shunt.
22. Close SW2 and SW3 switches. All switches should be closed.
23. Power down supply.

Schematic
3 Schematic

Figure 2. EVM Schematic Diagram

Notes highlight difference in EVM assemblies, for different Spins of IC.

- △ bq24085 EVM (IC) – PIN 8 is /CE, remove R3 and install R6 for enable by default. J2-2 can be used to disable IC by pulling high.
- △ bq24086 EVM (IC) – Pin 8 is TS, R3 and R6 are set to disable TS feature (Replace with desired values when using Thermistor), see data sheet for formula.
- △ bq24087, pin 7 is /CE, install pull-down R9 to enable IC. Replace D3 with a 0 ohm resistor, so JP3 shunt can be applied to disable the IC. Pin 8, remove R3 and install R6 for a default low, /TE. J2-2 can be used to pull /TE high.
- △ bq24088 EVM (IC) – Pin 8 is TS, R3 and R6 are set to disable TS feature (Replace with desired values when using Thermistor), see data sheet for formula.
- △ C4 is added as ESD suppression cap since pin 8 has an external connection and can easily be touched.

4 Physical Layouts

This section provides the board layout and assembly drawings for the EVM, that include the top layer (Figure 3), the bottom layer (Figure 4), and top assembly view (Figure 5) of the EVM.

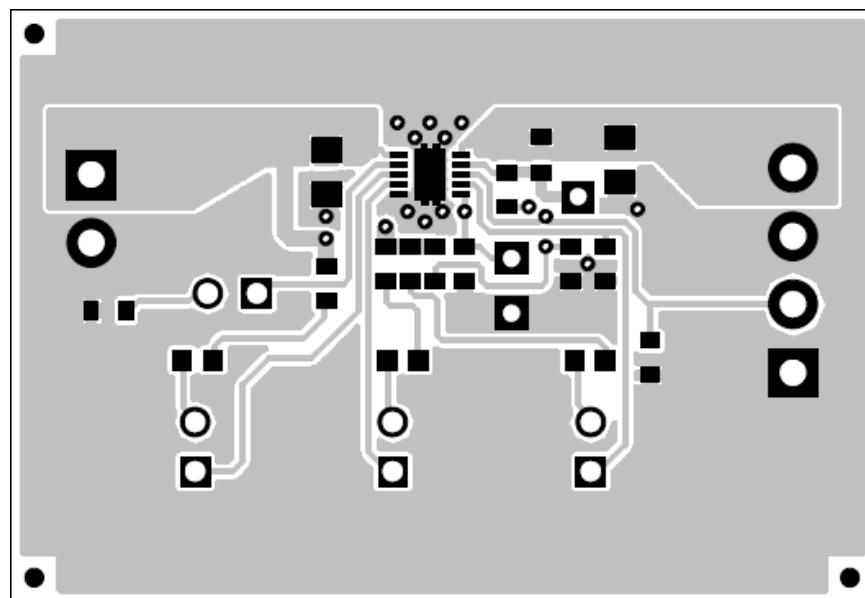


Figure 3. Top Layer Routing

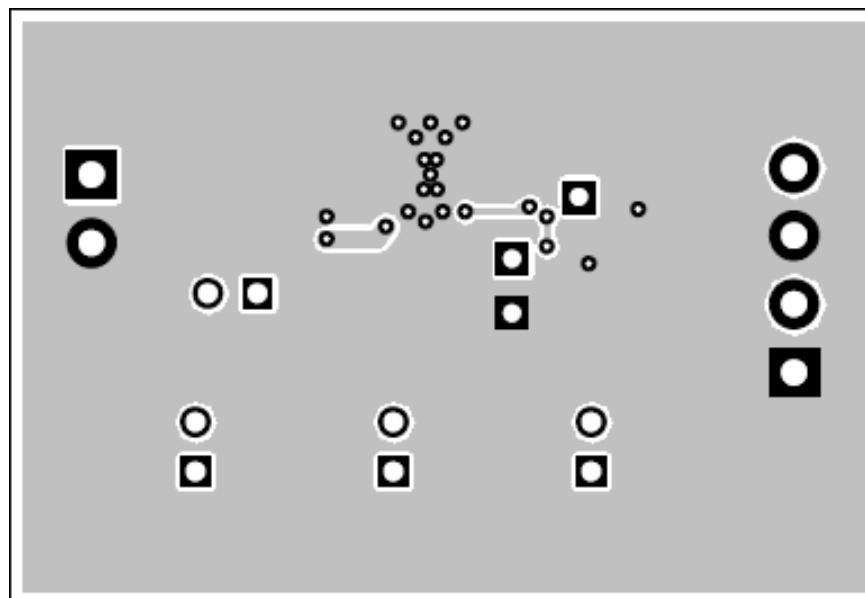
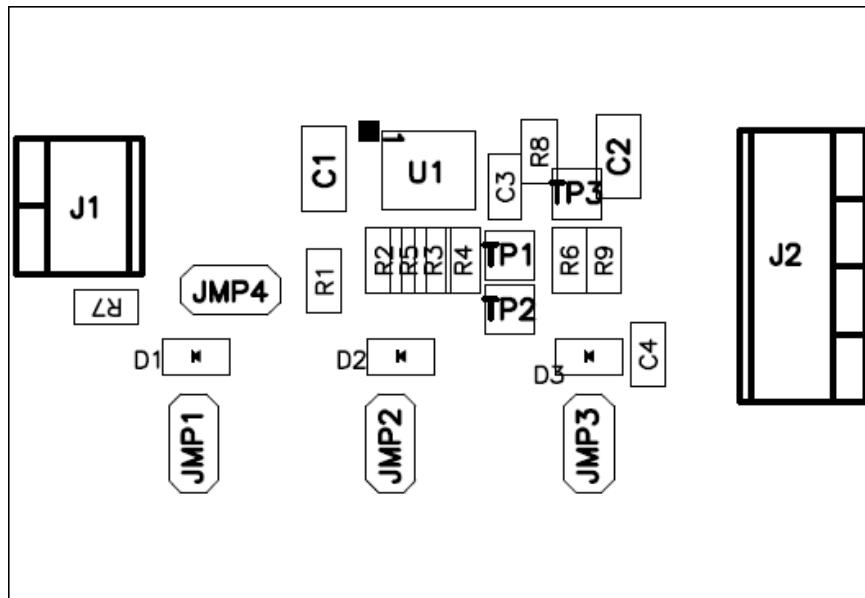



Figure 4. Bottom Layer Routing

Figure 5. Top Assembly View

5 Bill of Materials

HPA314A Bill of materials for bq24085, bq24086, bq24087, and bq24088 parts.

Table 3. HPA314A Bill of Materials

24085	24086	24087	24088	Ref Des	Value	Description	Size	Part Number	MFR
1	1	1	1	C1	4.7 μ F	Capacitor, Ceramic, 16 V, X5R, 10%	0805	ECJ-2FB1C475K	Panasonic
1	1	1	1	C2	2.2 μ F	Capacitor, Ceramic, 16 V, X5R, 10%	0805	ECJ-2FB1C225K	Panasonic
1	1	1	1	C3	0.1 μ F	Capacitor, Ceramic, 50 V, X7R, 10%	0603	Std	Std
1	1	1	1	C4	0.01 μ F	Capacitor, Ceramic, 50 V, X7R, 10%	0603	Std	Std
1	1	1	1	D1	LTST-C190CKT	Diode, LED, Red, 2.1 V, 20 mA, 6-mcd	0603	LTST-C190CKT	Lite On
1	1	1	1	D2	LTST-C190GKT	Diode, LED, Green, 2.1 V, 20 mA, 6-mcd	0603	LTST-C190GKT	Lite On
1	1	0	1	D3	LTST-C190GKT	Diode, LED, Green, 2.1 V, 20 mA, 6-mcd	0603	LTST-C190GKT	Lite On
0	0	1	0	D3	0 Ohm	Resistor, Chip, 1/16W, 1%	0603	Std	Std
1	1	1	1	J1	ED555/2DS	Terminal Block, 2-pin, 6 A, 3.5 mm	0.27 x 0.25 inch	ED555/2DS	OST
1	1	1	1	J2	ED555/4DS	Terminal Block, 4-pin, 6-A, 3.5 mm	0.55 x 0.25 inch	ED555/4DS	OST
4	4	4	4	JMP1, JMP2, JMP3, JMP4	PTC36SAAN	Header, Male 2-pin, 100 mil spacing, (36-pin strip)	0.100 inch x 2	PTC36SAAN	Sullins
3	3	3	3	R1, R2, R5	1.5 k Ω	Resistor, Chip, 1/16W, 1%	0603	Std	Std
0	1	0	1	R3	1M Ω	Resistor, Chip, 1/16W, 1%	0603	Std	Std
1	1	1	1	R6	1M Ω	Resistor, Chip, 1/16W, 1%	0603	Std	Std
0	0	1	0	R9	1M Ω	Resistor, Chip, 1/16W, 1%	0603	Std	Std
1	1	1	1	R4	1.13 k Ω	Resistor, Chip, 1/16W, 1%	0603	Std	Std
1	1	1	1	R7	49.9 k Ω	Resistor, Chip, 1/16W, 1%	0603	Std	Std
1	1	1	1	R8	390 Ω	Resistor, Chip, 1/16W, 1%	0603	Std	Std
1	0	0	0	U1	BQ24085DRC	IC, 750 mA Single Chip, Li Ion/Li POL, Charger	DRC10	BQ24085DRC	TI
0	1	0	0	U1	BQ24086DRC	IC, 750 mA Single Chip, Li Ion/Li POL, Charger	DRC10	BQ24086DRC	TI
0	0	1	0	U1	BQ24087DRC	IC, 750mA Single Chip, Li Ion/Li POL, Charger	DRC10	BQ24087DRC	TI
0	0	0	1	U1	BQ24088DRC	IC, 750mA Single Chip, Li Ion/Li POL, Charger	DRC10	BQ24088DRC	TI
1	1	1	1	—	PCB, 1.75 ln x 1.2 ln x 0.031 ln		PCB	Any	
4	4	4	4	Shunt		Shunt, 100-mil, Black	0.1	929950-00	3M

6 References

bq24085/6/7 data sheet ([SLUS784](#))

EVALUATION BOARD/KIT IMPORTANT NOTICE

Texas Instruments (TI) provides the enclosed product(s) under the following conditions:

This evaluation board/kit is intended for use for **ENGINEERING DEVELOPMENT, DEMONSTRATION, OR EVALUATION PURPOSES ONLY** and is not considered by TI to be a finished end-product fit for general consumer use. Persons handling the product(s) must have electronics training and observe good engineering practice standards. As such, the goods being provided are not intended to be complete in terms of required design-, marketing-, and/or manufacturing-related protective considerations, including product safety and environmental measures typically found in end products that incorporate such semiconductor components or circuit boards. This evaluation board/kit does not fall within the scope of the European Union directives regarding electromagnetic compatibility, restricted substances (RoHS), recycling (WEEE), FCC, CE or UL, and therefore may not meet the technical requirements of these directives or other related directives.

Should this evaluation board/kit not meet the specifications indicated in the User's Guide, the board/kit may be returned within 30 days from the date of delivery for a full refund. **THE FOREGOING WARRANTY IS THE EXCLUSIVE WARRANTY MADE BY SELLER TO BUYER AND IS IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED, IMPLIED, OR STATUTORY, INCLUDING ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE.**

The user assumes all responsibility and liability for proper and safe handling of the goods. Further, the user indemnifies TI from all claims arising from the handling or use of the goods. Due to the open construction of the product, it is the user's responsibility to take any and all appropriate precautions with regard to electrostatic discharge.

EXCEPT TO THE EXTENT OF THE INDEMNITY SET FORTH ABOVE, NEITHER PARTY SHALL BE LIABLE TO THE OTHER FOR ANY INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES.

TI currently deals with a variety of customers for products, and therefore our arrangement with the user is **not exclusive**.

TI assumes **no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein**.

Please read the User's Guide and, specifically, the Warnings and Restrictions notice in the User's Guide prior to handling the product. This notice contains important safety information about temperatures and voltages. For additional information on TI's environmental and/or safety programs, please contact the TI application engineer or visit www.ti.com/esh.

No license is granted under any patent right or other intellectual property right of TI covering or relating to any machine, process, or combination in which such TI products or services might be or are used.

FCC Warning

This evaluation board/kit is intended for use for **ENGINEERING DEVELOPMENT, DEMONSTRATION, OR EVALUATION PURPOSES ONLY** and is not considered by TI to be a finished end-product fit for general consumer use. It generates, uses, and can radiate radio frequency energy and has not been tested for compliance with the limits of computing devices pursuant to part 15 of FCC rules, which are designed to provide reasonable protection against radio frequency interference. Operation of this equipment in other environments may cause interference with radio communications, in which case the user at his own expense will be required to take whatever measures may be required to correct this interference.

EVM WARNINGS AND RESTRICTIONS

It is important to operate this EVM within the input voltage range of 4.4 V to 16 V and the output voltage range of 2.3 V to 4.4 V.

Exceeding the specified input range may cause unexpected operation and/or irreversible damage to the EVM. If there are questions concerning the input range, please contact a TI field representative prior to connecting the input power.

Applying loads outside of the specified output range may result in unintended operation and/or possible permanent damage to the EVM. Please consult the EVM User's Guide prior to connecting any load to the EVM output. If there is uncertainty as to the load specification, please contact a TI field representative.

During normal operation, some circuit components may have case temperatures greater than 75°C. The EVM is designed to operate properly with certain components above 100°C as long as the input and output ranges are maintained. These components include but are not limited to linear regulators, switching transistors, pass transistors, and current sense resistors. These types of devices can be identified using the EVM schematic located in the EVM User's Guide. When placing measurement probes near these devices during operation, please be aware that these devices may be very warm to the touch.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright 2008, Texas Instruments Incorporated

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you fully indemnify TI and its representatives against any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to [TI's Terms of Sale](#), [TI's General Quality Guidelines](#), or other applicable terms available either on [ti.com](#) or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products. Unless TI explicitly designates a product as custom or customer-specified, TI products are standard, catalog, general purpose devices.

TI objects to and rejects any additional or different terms you may propose.

Copyright © 2026, Texas Instruments Incorporated

Last updated 10/2025