SBASAG1 October   2021 ADC09DJ800 , ADC09QJ800 , ADC09SJ800

PRODUCTION DATA  

  1. Features
  2. Applications
  3. Description
  4. Description (continued)
  5. Revision History
  6. Pin Configuration and Functions
  7. Specifications
    1. 7.1  Absolute Maximum Ratings
    2. 7.2  ESD Ratings
    3. 7.3  Recommended Operating Conditions
    4. 7.4  Thermal Information
    5. 7.5  Electrical Characteristics: DC Specifications
    6. 7.6  Electrical Characteristics: Power Consumption
    7. 7.7  Electrical Characteristics: AC Specifications
    8. 7.8  Timing Requirements
    9. 7.9  Switching Characteristics
    10. 7.10 Typical Characteristics
  8. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1 Device Comparison
      2. 8.3.2 Analog Input
        1. 8.3.2.1 Analog Input Protection
        2. 8.3.2.2 Full-Scale Voltage (VFS) Adjustment
        3. 8.3.2.3 Analog Input Offset Adjust
        4. 8.3.2.4 ADC Core
          1. 8.3.2.4.1 ADC Theory of Operation
          2. 8.3.2.4.2 ADC Core Calibration
          3. 8.3.2.4.3 Analog Reference Voltage
          4. 8.3.2.4.4 ADC Over-range Detection
          5. 8.3.2.4.5 Code Error Rate (CER)
      3. 8.3.3 Temperature Monitoring Diode
      4. 8.3.4 Timestamp
      5. 8.3.5 Clocking
        1. 8.3.5.1 Converter PLL (C-PLL) for Sampling Clock Generation
        2. 8.3.5.2 LVDS Clock Outputs (PLLREFO±, TRIGOUT±)
        3. 8.3.5.3 Optional CMOS Clock Outputs (ORC, ORD)
        4. 8.3.5.4 SYSREF for JESD204C Subclass-1 Deterministic Latency
          1. 8.3.5.4.1 SYSREF Capture for Multi-Device Synchronization and Deterministic Latency
          2. 8.3.5.4.2 SYSREF Position Detector and Sampling Position Selection (SYSREF Windowing)
      6. 8.3.6 JESD204C Interface
        1. 8.3.6.1  Transport Layer
        2. 8.3.6.2  Scrambler
        3. 8.3.6.3  Link Layer
        4. 8.3.6.4  8B/10B Link Layer
          1. 8.3.6.4.1 Data Encoding (8B/10B)
          2. 8.3.6.4.2 Multiframes and the Local Multiframe Clock (LMFC)
          3. 8.3.6.4.3 Code Group Synchronization (CGS)
          4. 8.3.6.4.4 Initial Lane Alignment Sequence (ILAS)
          5. 8.3.6.4.5 Frame and Multiframe Monitoring
        5. 8.3.6.5  64B/66B Link Layer
          1. 8.3.6.5.1 64B/66B Encoding
          2. 8.3.6.5.2 Multiblocks, Extended Multiblocks and the Local Extended Multiblock Clock (LEMC)
            1. 8.3.6.5.2.1 Block, Multiblock and Extended Multiblock Alignment using Sync Header
              1. 8.3.6.5.2.1.1 Cyclic Redundancy Check (CRC) Mode
              2. 8.3.6.5.2.1.2 Forward Error Correction (FEC) Mode
          3. 8.3.6.5.3 Initial Lane Alignment
          4. 8.3.6.5.4 Block, Multiblock and Extended Multiblock Alignment Monitoring
        6. 8.3.6.6  Physical Layer
          1. 8.3.6.6.1 SerDes Pre-Emphasis
        7. 8.3.6.7  JESD204C Enable
        8. 8.3.6.8  Multi-Device Synchronization and Deterministic Latency
        9. 8.3.6.9  Operation in Subclass 0 Systems
        10. 8.3.6.10 Alarm Monitoring
          1. 8.3.6.10.1 Clock Upset Detection
          2. 8.3.6.10.2 FIFO Upset Detection
    4. 8.4 Device Functional Modes
      1. 8.4.1 Low Power Mode and High Performance Mode
      2. 8.4.2 JESD204C Modes
        1. 8.4.2.1 JESD204C Transport Layer Data Formats
        2. 8.4.2.2 64B/66B Sync Header Stream Configuration
        3. 8.4.2.3 Redundant Data Mode (Alternate Lanes)
      3. 8.4.3 Power-Down Modes
      4. 8.4.4 Test Modes
        1. 8.4.4.1 Serializer Test-Mode Details
        2. 8.4.4.2 PRBS Test Modes
        3. 8.4.4.3 Clock Pattern Mode
        4. 8.4.4.4 Ramp Test Mode
        5. 8.4.4.5 Short and Long Transport Test Mode
          1. 8.4.4.5.1 Short Transport Test Pattern
        6. 8.4.4.6 D21.5 Test Mode
        7. 8.4.4.7 K28.5 Test Mode
        8. 8.4.4.8 Repeated ILA Test Mode
        9. 8.4.4.9 Modified RPAT Test Mode
      5. 8.4.5 Calibration Modes and Trimming
        1. 8.4.5.1 Foreground Calibration Mode
        2. 8.4.5.2 Background Calibration Mode
        3. 8.4.5.3 Low-Power Background Calibration (LPBG) Mode
      6. 8.4.6 Offset Calibration
      7. 8.4.7 Trimming
    5. 8.5 Programming
      1. 8.5.1 Using the Serial Interface
      2. 8.5.2 SCS
      3. 8.5.3 SCLK
      4. 8.5.4 SDI
      5. 8.5.5 SDO
      6. 8.5.6 Streaming Mode
      7. 8.5.7 SPI_Register_Map Registers
  9. Application and Implementation
    1. 9.1 Application Information
    2. 9.2 Typical Applications
      1. 9.2.1 Light Detection and Ranging (LiDAR) Digitizer
        1. 9.2.1.1 Design Requirements
        2. 9.2.1.2 Detailed Design Procedure
          1. 9.2.1.2.1 Analog Front-End Requirements
          2. 9.2.1.2.2 Calculating Clock and SerDes Frequencies
        3. 9.2.1.3 Application Curves
    3. 9.3 Initialization Set Up
  10. 10Power Supply Recommendations
    1. 10.1 Power Sequencing
  11. 11Layout
    1. 11.1 Layout Guidelines
    2. 11.2 Layout Example
  12. 12Device and Documentation Support
    1. 12.1 Device Support
    2. 12.2 Receiving Notification of Documentation Updates
    3. 12.3 Support Resources
    4. 12.4 Trademarks
    5. 12.5 Electrostatic Discharge Caution
    6. 12.6 Glossary
  13. 13Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

LVDS Clock Outputs (PLLREFO±, TRIGOUT±)

Two LVDS clock outputs are provided to simplify system clocking architectures. These outputs are shown in Figure 8-5. The first LVDS clock output is PLLREFO±. PLLREFO± repeats the PLL reference clock directly from the selected reference clock input (CLK± or SE_CLK) as determined by PLLREF_SE. The PLLREFO± output is automatically enabled when the C-PLL is enabled, but can be disabled by setting PLLREFO_EN to 0. This output is only available when the PLL_EN pin is set high and when PD is set low. Setting PD high disables this output; and therefore, PD should not be used if PLLREFO± is necessary for system operation. Example use cases for PLLREFO± include driving the digital core fabric of an FPGA or ASIC or it can be daisy chained to the CLK± input pins of an additional device to provide the PLL reference clock for the second device. The PLLREFO± outputs can be daisy chained to the CLK± inputs of as many ADC09xJ800 devices as required by the system. Note that SYSREF must be provided from a separate clock source (clock chip, FPGA, ASIC, etc) and setup and hold times must be met at each device relative to the reference clock input in order to achieve deterministic latency and synchronization.

The second LVDS clock output is TRIGOUT±. This output can come from either the TMSTP± input (as a timestamp or trigger output) or from the JESD204C SerDes PLL (S-PLL). This clock output is not available at device startup and must be enabled through the SPI interface. The S-PLL can be divided by the RX_DIV divider and output from the TRIGOUT± pins as a reference clock for FPGA or ASIC transceiver block. Enable the TRIGOUT± output and set the TRIGOUT± operating mode (including RX_DIV divider) through the TRIGOUT_CTRL register. The TRIGOUT± clock output frequency can be calculated by Equation 6 when the S-PLL is chosen as the TRIGOUT± source.

Equation 6. fTRIGOUT = fLINERATE ÷ RX_DIV

where

  • fTRIGOUT is the TRIGOUT± output clock frequency (MHz)
  • fLINERATE is the SerDes linerate (Mbps)
  • RX_DIV is the S-PLL output divider