SBASAG1 October   2021 ADC09DJ800 , ADC09QJ800 , ADC09SJ800

PRODUCTION DATA  

  1. Features
  2. Applications
  3. Description
  4. Description (continued)
  5. Revision History
  6. Pin Configuration and Functions
  7. Specifications
    1. 7.1  Absolute Maximum Ratings
    2. 7.2  ESD Ratings
    3. 7.3  Recommended Operating Conditions
    4. 7.4  Thermal Information
    5. 7.5  Electrical Characteristics: DC Specifications
    6. 7.6  Electrical Characteristics: Power Consumption
    7. 7.7  Electrical Characteristics: AC Specifications
    8. 7.8  Timing Requirements
    9. 7.9  Switching Characteristics
    10. 7.10 Typical Characteristics
  8. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1 Device Comparison
      2. 8.3.2 Analog Input
        1. 8.3.2.1 Analog Input Protection
        2. 8.3.2.2 Full-Scale Voltage (VFS) Adjustment
        3. 8.3.2.3 Analog Input Offset Adjust
        4. 8.3.2.4 ADC Core
          1. 8.3.2.4.1 ADC Theory of Operation
          2. 8.3.2.4.2 ADC Core Calibration
          3. 8.3.2.4.3 Analog Reference Voltage
          4. 8.3.2.4.4 ADC Over-range Detection
          5. 8.3.2.4.5 Code Error Rate (CER)
      3. 8.3.3 Temperature Monitoring Diode
      4. 8.3.4 Timestamp
      5. 8.3.5 Clocking
        1. 8.3.5.1 Converter PLL (C-PLL) for Sampling Clock Generation
        2. 8.3.5.2 LVDS Clock Outputs (PLLREFO±, TRIGOUT±)
        3. 8.3.5.3 Optional CMOS Clock Outputs (ORC, ORD)
        4. 8.3.5.4 SYSREF for JESD204C Subclass-1 Deterministic Latency
          1. 8.3.5.4.1 SYSREF Capture for Multi-Device Synchronization and Deterministic Latency
          2. 8.3.5.4.2 SYSREF Position Detector and Sampling Position Selection (SYSREF Windowing)
      6. 8.3.6 JESD204C Interface
        1. 8.3.6.1  Transport Layer
        2. 8.3.6.2  Scrambler
        3. 8.3.6.3  Link Layer
        4. 8.3.6.4  8B/10B Link Layer
          1. 8.3.6.4.1 Data Encoding (8B/10B)
          2. 8.3.6.4.2 Multiframes and the Local Multiframe Clock (LMFC)
          3. 8.3.6.4.3 Code Group Synchronization (CGS)
          4. 8.3.6.4.4 Initial Lane Alignment Sequence (ILAS)
          5. 8.3.6.4.5 Frame and Multiframe Monitoring
        5. 8.3.6.5  64B/66B Link Layer
          1. 8.3.6.5.1 64B/66B Encoding
          2. 8.3.6.5.2 Multiblocks, Extended Multiblocks and the Local Extended Multiblock Clock (LEMC)
            1. 8.3.6.5.2.1 Block, Multiblock and Extended Multiblock Alignment using Sync Header
              1. 8.3.6.5.2.1.1 Cyclic Redundancy Check (CRC) Mode
              2. 8.3.6.5.2.1.2 Forward Error Correction (FEC) Mode
          3. 8.3.6.5.3 Initial Lane Alignment
          4. 8.3.6.5.4 Block, Multiblock and Extended Multiblock Alignment Monitoring
        6. 8.3.6.6  Physical Layer
          1. 8.3.6.6.1 SerDes Pre-Emphasis
        7. 8.3.6.7  JESD204C Enable
        8. 8.3.6.8  Multi-Device Synchronization and Deterministic Latency
        9. 8.3.6.9  Operation in Subclass 0 Systems
        10. 8.3.6.10 Alarm Monitoring
          1. 8.3.6.10.1 Clock Upset Detection
          2. 8.3.6.10.2 FIFO Upset Detection
    4. 8.4 Device Functional Modes
      1. 8.4.1 Low Power Mode and High Performance Mode
      2. 8.4.2 JESD204C Modes
        1. 8.4.2.1 JESD204C Transport Layer Data Formats
        2. 8.4.2.2 64B/66B Sync Header Stream Configuration
        3. 8.4.2.3 Redundant Data Mode (Alternate Lanes)
      3. 8.4.3 Power-Down Modes
      4. 8.4.4 Test Modes
        1. 8.4.4.1 Serializer Test-Mode Details
        2. 8.4.4.2 PRBS Test Modes
        3. 8.4.4.3 Clock Pattern Mode
        4. 8.4.4.4 Ramp Test Mode
        5. 8.4.4.5 Short and Long Transport Test Mode
          1. 8.4.4.5.1 Short Transport Test Pattern
        6. 8.4.4.6 D21.5 Test Mode
        7. 8.4.4.7 K28.5 Test Mode
        8. 8.4.4.8 Repeated ILA Test Mode
        9. 8.4.4.9 Modified RPAT Test Mode
      5. 8.4.5 Calibration Modes and Trimming
        1. 8.4.5.1 Foreground Calibration Mode
        2. 8.4.5.2 Background Calibration Mode
        3. 8.4.5.3 Low-Power Background Calibration (LPBG) Mode
      6. 8.4.6 Offset Calibration
      7. 8.4.7 Trimming
    5. 8.5 Programming
      1. 8.5.1 Using the Serial Interface
      2. 8.5.2 SCS
      3. 8.5.3 SCLK
      4. 8.5.4 SDI
      5. 8.5.5 SDO
      6. 8.5.6 Streaming Mode
      7. 8.5.7 SPI_Register_Map Registers
  9. Application and Implementation
    1. 9.1 Application Information
    2. 9.2 Typical Applications
      1. 9.2.1 Light Detection and Ranging (LiDAR) Digitizer
        1. 9.2.1.1 Design Requirements
        2. 9.2.1.2 Detailed Design Procedure
          1. 9.2.1.2.1 Analog Front-End Requirements
          2. 9.2.1.2.2 Calculating Clock and SerDes Frequencies
        3. 9.2.1.3 Application Curves
    3. 9.3 Initialization Set Up
  10. 10Power Supply Recommendations
    1. 10.1 Power Sequencing
  11. 11Layout
    1. 11.1 Layout Guidelines
    2. 11.2 Layout Example
  12. 12Device and Documentation Support
    1. 12.1 Device Support
    2. 12.2 Receiving Notification of Documentation Updates
    3. 12.3 Support Resources
    4. 12.4 Trademarks
    5. 12.5 Electrostatic Discharge Caution
    6. 12.6 Glossary
  13. 13Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Background Calibration Mode

Background calibration mode allows the ADC to continuously operate, with no interruption of data. This continuous operation is accomplished by activating extra ADC cores that are calibrated to take over operation for one of the other previously active ADC cores. For the quad channel device, ADC cores 0 and 1 share one extra ADC core (ADC core 2) and ADC cores 4 and 5 share the other extra ADC core (ADC core 3). For the dual channel device, ADC cores 0 and 1 share one extra ADC core (ADC core 2). For the single channel device, ADC core 0 has one extra ADC core (ADC core 2). When an ADC core is taken off-line the ADC is then calibrated and then can in turn take over to allow the next ADC to be calibrated. This process operates continuously, ensuring the ADC cores always provide the optimum performance regardless of system operating condition changes. Only one of the cores is calibrated at a time to reduce power consumption, however the additional active ADC core does increase the power consumption in comparison to foreground calibration mode. The low-power background calibration (LPBG) mode discussed in the Low-Power Background Calibration (LPBG) Mode section provides reduced average power consumption in comparison with the standard background calibration mode. Background calibration can be enabled by setting CAL_BG. CAL_TRIG_EN must be set to 0 and CAL_SOFT_TRIG must be set to 1.

Great care has been taken to minimize effects on converted data as the core switching process occurs, however, small brief glitches may still occur on the converter data as the cores are swapped. It is recommended to set register ADC_SRC_DLY (address = 0x9A) to 0x1F and MUX_SEL_DLY (address = 0x9B) to 0x1E.

See the Typical Characteristics section for examples of possible glitches in sine-wave and DC signals.