SLVSEO0B August   2021  – February 2023 ADC12DJ4000RF

PRODUCTION DATA  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Device Comparison
  6. Pin Configuration and Functions
  7. Specifications
    1. 7.1  Absolute Maximum Ratings
    2. 7.2  ESD Ratings
    3. 7.3  Recommended Operating Conditions
    4. 7.4  Thermal Information
    5. 7.5  Electrical Characteristics: DC Specifications
    6. 7.6  Electrical Characteristics: Power Consumption
    7. 7.7  Electrical Characteristics: AC Specifications (Dual-Channel Mode)
    8. 7.8  Electrical Characteristics: AC Specifications (Single-Channel Mode)
    9. 7.9  Timing Requirements
    10. 7.10 Switching Characteristics
    11. 7.11 Typical Characteristics
  8. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1 Analog Inputs
        1. 8.3.1.1 Analog Input Protection
        2. 8.3.1.2 Full-Scale Voltage (VFS) Adjustment
        3. 8.3.1.3 Analog Input Offset Adjust
      2. 8.3.2 ADC Core
        1. 8.3.2.1 ADC Theory of Operation
        2. 8.3.2.2 ADC Core Calibration
        3. 8.3.2.3 Analog Reference Voltage
        4. 8.3.2.4 ADC Overrange Detection
        5. 8.3.2.5 Code Error Rate (CER)
      3. 8.3.3 Temperature Monitoring Diode
      4. 8.3.4 Timestamp
      5. 8.3.5 Clocking
        1. 8.3.5.1 Noiseless Aperture Delay Adjustment (tAD Adjust)
        2. 8.3.5.2 Aperture Delay Ramp Control (TAD_RAMP)
        3. 8.3.5.3 SYSREF Capture for Multi-Device Synchronization and Deterministic Latency
          1. 8.3.5.3.1 SYSREF Position Detector and Sampling Position Selection (SYSREF Windowing)
          2. 8.3.5.3.2 Automatic SYSREF Calibration
      6. 8.3.6 Programmable FIR Filter (PFIR)
        1. 8.3.6.1 Dual Channel Equalization
        2. 8.3.6.2 Single Channel Equalization
        3. 8.3.6.3 Time Varying Filter
      7. 8.3.7 Digital Down Converters (DDC)
        1. 8.3.7.1 Rounding and Saturation
        2. 8.3.7.2 Numerically-Controlled Oscillator and Complex Mixer
          1. 8.3.7.2.1 NCO Fast Frequency Hopping (FFH)
          2. 8.3.7.2.2 NCO Selection
          3. 8.3.7.2.3 Basic NCO Frequency Setting Mode
          4. 8.3.7.2.4 Rational NCO Frequency Setting Mode
          5. 8.3.7.2.5 NCO Phase Offset Setting
          6. 8.3.7.2.6 NCO Phase Synchronization
        3. 8.3.7.3 Decimation Filters
        4. 8.3.7.4 Output Data Format
        5. 8.3.7.5 Decimation Settings
          1. 8.3.7.5.1 Decimation Factor
          2. 8.3.7.5.2 DDC Gain Boost
      8. 8.3.8 JESD204C Interface
        1. 8.3.8.1  Transport Layer
        2. 8.3.8.2  Scrambler
        3. 8.3.8.3  Link Layer
        4. 8.3.8.4  8B/10B Link Layer
          1. 8.3.8.4.1 Data Encoding (8B/10B)
          2. 8.3.8.4.2 Multiframes and the Local Multiframe Clock (LMFC)
          3. 8.3.8.4.3 Code Group Synchronization (CGS)
          4. 8.3.8.4.4 Initial Lane Alignment Sequence (ILAS)
          5. 8.3.8.4.5 Frame and Multiframe Monitoring
        5. 8.3.8.5  64B/66B Link Layer
          1. 8.3.8.5.1 64B/66B Encoding
          2. 8.3.8.5.2 Multiblocks, Extended Multiblocks and the Local Extended Multiblock Clock (LEMC)
          3. 8.3.8.5.3 Block, Multiblock and Extended Multiblock Alignment using Sync Header
            1. 8.3.8.5.3.1 Cyclic Redundancy Check (CRC) Mode
            2. 8.3.8.5.3.2 Forward Error Correction (FEC) Mode
          4. 8.3.8.5.4 Initial Lane Alignment
          5. 8.3.8.5.5 Block, Multiblock and Extended Multiblock Alignment Monitoring
        6. 8.3.8.6  Physical Layer
        7. 8.3.8.7  SerDes Pre-Emphasis
        8. 8.3.8.8  JESD204C Enable
        9. 8.3.8.9  Multi-Device Synchronization and Deterministic Latency
        10. 8.3.8.10 Operation in Subclass 0 Systems
      9. 8.3.9 Alarm Monitoring
        1. 8.3.9.1 NCO Upset Detection
        2. 8.3.9.2 Clock Upset Detection
        3. 8.3.9.3 FIFO Upset Detection
    4. 8.4 Device Functional Modes
      1. 8.4.1 Dual-Channel Mode
      2. 8.4.2 Single-Channel Mode (DES Mode)
      3. 8.4.3 Dual-Input Single-Channel Mode (DUAL DES Mode)
      4. 8.4.4 JESD204C Modes
        1. 8.4.4.1 JESD204C Operating Modes Table
        2. 8.4.4.2 JESD204C Modes continued
        3. 8.4.4.3 JESD204C Transport Layer Data Formats
        4. 8.4.4.4 64B/66B Sync Header Stream Configuration
        5. 8.4.4.5 Dual DDC and Redundant Data Mode
      5. 8.4.5 Power-Down Modes
      6. 8.4.6 Test Modes
        1. 8.4.6.1 Serializer Test-Mode Details
        2. 8.4.6.2 PRBS Test Modes
        3. 8.4.6.3 Clock Pattern Mode
        4. 8.4.6.4 Ramp Test Mode
        5. 8.4.6.5 Short and Long Transport Test Mode
          1. 8.4.6.5.1 Short Transport Test Pattern
          2. 8.4.6.5.2 Long Transport Test Pattern
        6. 8.4.6.6 D21.5 Test Mode
        7. 8.4.6.7 K28.5 Test Mode
        8. 8.4.6.8 Repeated ILA Test Mode
        9. 8.4.6.9 Modified RPAT Test Mode
      7. 8.4.7 Calibration Modes and Trimming
        1. 8.4.7.1 Foreground Calibration Mode
        2. 8.4.7.2 Background Calibration Mode
        3. 8.4.7.3 Low-Power Background Calibration (LPBG) Mode
      8. 8.4.8 Offset Calibration
      9. 8.4.9 Trimming
    5. 8.5 Programming
      1. 8.5.1 Using the Serial Interface
        1. 8.5.1.1 SCS
        2. 8.5.1.2 SCLK
        3. 8.5.1.3 SDI
        4. 8.5.1.4 SDO
        5. 8.5.1.5 Streaming Mode
    6. 8.6 SPI Register Map
  9. Application Information Disclaimer
    1. 9.1 Application Information
    2. 9.2 Typical Applications
      1. 9.2.1 Wideband RF Sampling Receiver
        1. 9.2.1.1 Design Requirements
          1. 9.2.1.1.1 Input Signal Path
          2. 9.2.1.1.2 Clocking
        2. 9.2.1.2 Detailed Design Procedure
          1. 9.2.1.2.1 Calculating Values of AC-Coupling Capacitors
        3. 9.2.1.3 Application Curves
    3. 9.3 Initialization Set Up
  10. 10Power Supply Recommendations
    1. 10.1 Power Sequencing
  11. 11Layout
    1. 11.1 Layout Guidelines
    2. 11.2 Layout Example
  12. 12Device and Documentation Support
    1. 12.1 Device Support
      1. 12.1.1 Development Support
        1. 12.1.1.1 142
    2. 12.2 Documentation Support
      1. 12.2.1 Related Documentation
    3. 12.3 Receiving Notification of Documentation Updates
    4. 12.4 Support Resources
    5. 12.5 Trademarks
    6. 12.6 Electrostatic Discharge Caution
    7. 12.7 Glossary
  13. 13Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information
Long Transport Test Pattern

The long-transport test mode is used in all of the JMODE modes where N' equals 16 due to the use of control bits. Patterns are generated in accordance with the JESD204C standard and are different for each output format as defined in Operating Modes. The rules for the pattern are defined below. Equation 16 gives the length of the test pattern. The long transport test pattern is the same for link A and link B, where DAx lanes belong to link A and DBx lanes belong to link B.

Equation 16. Long Test Pattern Length (Frames) = K × ceil[(M × S + 2) / K]

  • Sample Data:
    • Frame 0: Each sample contains N bits, with all samples set to the converter ID (CID) plus 1 (CID + 1). The CID is defined based on the converter number within the link; two links are used in all modes. Within a link, the converters are numbered by channel (A or B) and in-phase (I) and quadrature-phase (Q). The numbering resets for the second link. For instance, in JMODE 11, channel A and channel B data are separated into separate links (Link A and Link B). The in-phase component for each channel has CID = 0 and the quadrature-phase component has CID = 1.
    • Frame 1: Each sample contains N bits, with each sample (for each converter) set as its individual sample ID (SID) within the frame plus 1 (SID + 1)
    • Frame 2 +: Each sample contains N bits, with the data set to 2N–1 for all samples (for example, if N is 15 then 2N–1 = 16384)
  • Control Bits (if CS > 0):
    • Frame 0 to M × S – 1: The control bit belonging to the sample mod (i, S) of the converter floor (i, S) is set to 1 and all others are set to 0, where i is the frame index (i = 0 is the first frame of the pattern). Essentially, the control bit walks from the lowest indexed sample to the highest indexed sample and from the lowest indexed converter to the highest indexed converter, changing position every frame.
    • Frame M × S +: All control bits are set to 0

Table 8-63 describes an example long transport test pattern for when JMODE = 10, K = 10.

Table 8-63 Example Long Transport Test Pattern (JMODE = 10, K = 10)
TIME →PATTERN REPEATS →
OCTET
NUM
0123456789101112131415161718192021
DA00x00030x00020x80000x80000x80000x80000x80000x80000x80000x80000x0003
DA10x00040x00030x80000x80000x80000x80000x80000x80000x80000x80000x0004
DB00x00030x00020x80000x80000x80000x80000x80000x80000x80000x80000x0003
DB10x00040x00030x80000x80000x80000x80000x80000x80000x80000x80000x0004
Frame
n
Frame
n + 1
Frame
n + 2
Frame
n + 3
Frame
n + 4
Frame
n + 5
Frame
n + 6
Frame
n + 7
Frame
n + 8
Frame
n + 9
Frame
n + 10

The pattern starts at the end of the initial lane alignment sequence (ILAS) and repeats indefinitely as long as the link remains running. For more details see the JESD204C specification, section 5.1.6.3.