SBAS817C November   2017  – November 2019 ADS8166 , ADS8167 , ADS8168

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
    1.     Device Images
      1.      ADS816x Block Diagram
  4. Revision History
  5. Pin Configuration and Functions
    1.     Pin Functions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Timing Requirements
    7. 6.7 Switching Characteristics
    8. 6.8 Typical Characteristics
  7. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 Analog Multiplexer
        1. 7.3.1.1 Multiplexer Configurations
        2. 7.3.1.2 Multiplexer With Minimum Crosstalk
        3. 7.3.1.3 Early Switching for Direct Sensor Interface
      2. 7.3.2 Reference
        1. 7.3.2.1 Internal Reference
        2. 7.3.2.2 External Reference
      3. 7.3.3 Reference Buffer
      4. 7.3.4 REFby2 Buffer
      5. 7.3.5 Converter Module
        1. 7.3.5.1 Internal Oscillator
        2. 7.3.5.2 ADC Transfer Function
      6. 7.3.6 Low-Dropout Regulator (LDO)
    4. 7.4 Device Functional Modes
      1. 7.4.1 Channel Selection Using Internal Multiplexer
        1. 7.4.1.1 Manual Mode
        2. 7.4.1.2 On-The-Fly Mode
        3. 7.4.1.3 Auto Sequence Mode
        4. 7.4.1.4 Custom Channel Sequencing Mode
      2. 7.4.2 Digital Window Comparator
    5. 7.5 Programming
      1. 7.5.1 Data Transfer Protocols
        1. 7.5.1.1 Enhanced-SPI Interface
          1. 7.5.1.1.1 Protocols for Configuring the Device
          2. 7.5.1.1.2 Protocols for Reading From the Device
            1. 7.5.1.1.2.1 SPI Protocols With a Single SDO
            2. 7.5.1.1.2.2 SPI Protocols With Dual SDO
            3. 7.5.1.1.2.3 Clock Re-Timer Data Transfer
              1. 7.5.1.1.2.3.1 Output Bus Width Options
      2. 7.5.2 Register Read/Write Operation
    6. 7.6 Register Maps
      1. 7.6.1 Interface and Hardware Configuration Registers
        1. 7.6.1.1 REG_ACCESS Register (address = 00h) [reset = 00h]
          1. Table 11. REG_ACCESS Register Field Descriptions
        2. 7.6.1.2 PD_CNTL Register (address = 04h) [reset = 00h]
          1. Table 12. PD_CNTL Register Field Descriptions
        3. 7.6.1.3 SDI_CNTL Register (address = 008h) [reset = 00h]
          1. Table 13. SDI_CNTL Register Field Descriptions
        4. 7.6.1.4 SDO_CNTL1 Register (address = 0Ch) [reset = 00h]
          1. Table 14. SDO_CNTL1 Register Field Descriptions
        5. 7.6.1.5 SDO_CNTL2 Register (address = 0Dh) [reset = 00h]
          1. Table 15. SDO_CNTL2 Register Field Descriptions
        6. 7.6.1.6 SDO_CNTL3 Register (address = 0Eh) [reset = 00h]
          1. Table 16. SDO_CNTL3 Register Field Descriptions
        7. 7.6.1.7 SDO_CNTL4 Register (address = 0Fh) [reset = 00h]
          1. Table 17. SDO_CNTL4 Register Field Descriptions
        8. 7.6.1.8 DATA_CNTL Register (address = 10h) [reset = 00h]
          1. Table 18. DATA_CNTL Register Field Descriptions
        9. 7.6.1.9 PARITY_CNTL Register (address = 11h) [reset = 00h]
          1. Table 19. PARITY_CNTL Register Field Descriptions
      2. 7.6.2 Device Calibration Registers
        1. 7.6.2.1 OFST_CAL Register (address = 18h) [reset = 00h]
          1. Table 21. OFST_CAL Register Field Descriptions
        2. 7.6.2.2 REF_MRG1 Register (address = 19h) [reset = 00h]
          1. Table 22. REF_MRG1 Register Field Descriptions
        3. 7.6.2.3 REF_MRG2 Register (address = 1Ah) [reset = 00h]
          1. Table 24. REF_MRG2 Register Field Descriptions
        4. 7.6.2.4 REFby2_MRG Register (address = 1Bh) [reset = 00h]
          1. Table 25. REFby2_MRG Register Field Descriptions
      3. 7.6.3 Analog Input Configuration Registers
        1. 7.6.3.1 AIN_CFG Register (address = 24h) [reset = 00h]
          1. Table 28. AIN_CFG Register Field Descriptions
        2. 7.6.3.2 COM_CFG Register (address = 27h) [reset = 00h]
          1. Table 29. COM_CFG Register Field Descriptions
      4. 7.6.4 Channel Sequence Configuration Registers Map
        1. 7.6.4.1 DEVICE_CFG Register (address = 1Ch) [reset = 00h]
          1. Table 31. DEVICE_CFG Register Field Descriptions
        2. 7.6.4.2 CHANNEL_ID Register (address = 1Dh) [reset = 00h]
          1. Table 33. CHANNEL_ID Register Field Descriptions
        3. 7.6.4.3 SEQ_START Register (address = 1Eh) [reset = 00h]
          1. Table 35. SEQ_START Register Field Descriptions
        4. 7.6.4.4 SEQ_ABORT Register (address = 1Fh) [reset = 00h]
          1. Table 36. SEQ_ABORT Register Field Descriptions
        5. 7.6.4.5 ON_THE_FLY_CFG Register (address = 2Ah) [reset = 00h]
          1. Table 37. ON_THE_FLY_CFG Register Field Descriptions
        6. 7.6.4.6 AUTO_SEQ_CFG1 Register (address = 80h) [reset = 00h]
          1. Table 38. AUTO_SEQ_CFG1 Register Field Descriptions
        7. 7.6.4.7 AUTO_SEQ_CFG2 Register (address = 82h) [reset = 00h]
          1. Table 39. AUTO_SEQ_CFG2 Register Field Descriptions
        8. 7.6.4.8 Custom Channel Sequencing Mode Registers
          1. 7.6.4.8.1 CCS_START_INDEX Register (address = 88h) [reset = 00h]
            1. Table 41. CCS_START_INDEX Register Field Descriptions
          2. 7.6.4.8.2 CCS_END_INDEX Register (address = 89h) [reset = 00h]
            1. Table 42. CCS_END_INDEX Register Field Descriptions
          3. 7.6.4.8.3 CCS_SEQ_LOOP Register (address = 8Bh) [reset = 00h]
            1. Table 43. CCS_SEQ_LOOP Register Field Descriptions
          4. 7.6.4.8.4 CCS_CHID_INDEX_m Registers (address = 8C, 8E, 90, 92, 94, 96, 98, 9A, 9C, 9E, A0, A2, A4, A6, A8, and AAh) [reset = 00h]
            1. Table 44. CCS_CHID_INDEX_m Register Field Descriptions
          5. 7.6.4.8.5 REPEAT_INDEX_m Registers (address = 8D, 8F, 91, 93, 95, 97, 99, 9B, 9D, 9F, A1, A3, A5, A7, A9, and ABh) [reset = 00h]
            1. Table 45. REPEAT_INDEX_m Register Field Descriptions
      5. 7.6.5 Digital Window Comparator Configuration Registers Map
        1. 7.6.5.1  ALERT_CFG Register (address = 2Eh) [reset = 00h]
          1. Table 47. ALERT_CFG Register Field Descriptions
        2. 7.6.5.2  HI_TRIG_AINx[15:0] Register (address = 4Dh to 30h) [reset = 0000h]
          1. Table 49. HI_TRIG_AINx[15:0] Registers Field Descriptions
        3. 7.6.5.3  LO_TRIG_AINx[15:0] Register (address = 71h to 54h) [reset = 0000h]
          1. Table 51. LO_TRIG_AINx[15:0] Registers Field Descriptions
        4. 7.6.5.4  HYSTERESIS_AINx[7:0] Register (address = 4Fh to 33h) [reset = 00h]
          1. Table 52. HYSTERESIS_AINx[7:0] Register Field Descriptions
        5. 7.6.5.5  ALERT_LO_STATUS Register (address = 78h) [reset = 00h]
          1. Table 53. ALERT_LO_STATUS Register Field Descriptions
        6. 7.6.5.6  ALERT_HI_STATUS Register (address = 79h) [reset = 00h]
          1. Table 54. ALERT_HI_STATUS Register Field Descriptions
        7. 7.6.5.7  ALERT_STATUS Register (address = 7Ah) [reset = 00h]
          1. Table 55. ALERT_STATUS Register Field Descriptions
        8. 7.6.5.8  CURR_ALERT_LO_STATUS Register (address = 7Ch) [reset = 00h]
          1. Table 56. CURR_ALERT_LO_STATUS Register Field Descriptions
        9. 7.6.5.9  CURR_ALERT_HI_STATUS Register (address = 7Dh) [reset = 00h]
          1. Table 57. CURR_ALERT_HI_STATUS Register Field Descriptions
        10. 7.6.5.10 CURR_ALERT_STATUS Register (address = 7Eh) [reset = 00h]
          1. Table 58. CURR_ALERT_STATUS Register Field Descriptions
  8. Application and Implementation
    1. 8.1 Application Information
      1. 8.1.1 Multiplexer Input Connection
      2. 8.1.2 Selecting an ADC Input Buffer
    2. 8.2 Typical Applications
      1. 8.2.1 1-MSPS DAQ Circuit With Lowest Distortion and Noise Performance
        1. 8.2.1.1 Design Requirements
        2. 8.2.1.2 Detailed Design Procedure
        3. 8.2.1.3 Application Curve
      2. 8.2.2 8-Channel Photodiode Detector With Smallest Size and Lowest Number of Components
        1. 8.2.2.1 Design Requirements
        2. 8.2.2.2 Detailed Design Procedure
      3. 8.2.3 1-MSPS DAQ Circuit for Factory Automation
        1. 8.2.3.1 Design Requirements
        2. 8.2.3.2 Detailed Design Procedure
  9. Power Supply Recommendations
  10. 10Layout
    1. 10.1 Layout Guidelines
      1. 10.1.1 Analog Signal Path
      2. 10.1.2 Grounding and PCB Stack-Up
      3. 10.1.3 Decoupling of Power Supplies
      4. 10.1.4 Reference Decoupling
      5. 10.1.5 Reference Buffer Decoupling
      6. 10.1.6 Multiplexer Input Decoupling
      7. 10.1.7 ADC Input Decoupling
      8. 10.1.8 Example Schematic
    2. 10.2 Layout Example
  11. 11Device and Documentation Support
    1. 11.1 Documentation Support
      1. 11.1.1 Related Documentation
    2. 11.2 Related Links
    3. 11.3 Receiving Notification of Documentation Updates
    4. 11.4 Community Resources
    5. 11.5 Trademarks
    6. 11.6 Electrostatic Discharge Caution
    7. 11.7 Glossary
  12. 12Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Selecting an ADC Input Buffer

Figure 101 shows the external amplifier, charge bucket filter, and sample-and-hold circuit at the ADC input for the ADS816x. Having a short background on the conversion process helps to understand the design procedure for selecting the amplifier and RC filter. The conversion process is broken up into two phases: the acquisition phase and the conversion phase. During the acquisition phase the SW switches are closed, and the input signal is stored on the sample-and-hold capacitors, CS1 and CS2. After the acquisition phase, the switches opens and the voltage stored on the capacitors is converted to a digital code by the SAR algorithm. This conversion process depletes the charge on the sample-and-hold capacitors.

ADS8166 ADS8167 ADS8168 apps_selecting_buffer.gifFigure 101. Driving the ADC Inputs (ADC-INP and ADC-INM)

During subsequent acquisition cycles, the sample-and-hold capacitor must be charged to the ADC input voltage that can make step changes in the value because each input may be from a different multiplexer channel. For example, if AIN0 is connected to 4 V and AIN1 is connected to 0.5 V, the sample-and-hold capacitor must charge to 4 V for the first acquisition cycle and then must charge to 0.5 V for the second acquisition cycle. When running at high throughput, the acquisition time is small and a wide bandwidth amplifier is required for proper settling at the ADC inputs (minimum acquisition time for the ADS816x is tACQ = 330 ns). The RC filter (RFLT and CFLT) is designed to provide a reservoir of charge that helps rapidly charge the internal sample-and-hold capacitor at the start of the acquisition period. For this reason, the RC filter is sometimes called a charge bucket or charge kickback filter. A method for determining the required amplifier bandwidth and the values of the RC charge bucket filter is provided in this section.

A summary of the equations and an example calculation is provided to determine the amplifier bandwidth and RC charge bucket circuit for the ADS816x assuming a minimum ADC acquisition time is used. Equation 5 finds the amplifier time constant and Equation 6 uses this to computer the amplifiers required unity-gain bandwidth.

Equation 5. ADS8166 ADS8167 ADS8168 Eq4_BAS817.gif
Equation 6. ADS8166 ADS8167 ADS8168 Eq5_BAS817.gif

Equation 7, Equation 8, and Equation 9 calculate CSH, the LSB value, and τC, respectively.

Equation 7. ADS8166 ADS8167 ADS8168 Eq1_BAS817.gif
Equation 8. ADS8166 ADS8167 ADS8168 Eq2_BAS817.gif
Equation 9. ADS8166 ADS8167 ADS8168 Eq3_BAS817.gif

The value of CFLT is computed in Equation 10 by taking 20 times the internal sample-and-hold capacitance. The factor of 20 is a rule of thumb that is intended to minimize the droop in voltage on the charge bucket capacitor, CFLT, after the start of the acquisition period. The filter resistor, RFLT, is computed in Equation 11 using the op amp time constant and CFLT. These equations model the system as a first-order system, but in reality the system is a higher order. Consequently, the values may need to be adjusted to optimize performance. This optimization and more details on the math behind the component selection are covered in the ADC Precision Labs training videos.

Equation 10. ADS8166 ADS8167 ADS8168 Eq6_BAS817.gif
Equation 11. ADS8166 ADS8167 ADS8168 Eq7_BAS817.gif