SBASA44B august   2021  – june 2023 AFE7900

PRODUCTION DATA  

  1.   1
  2. 1Features
  3. 2Applications
  4. 3Description
  5. 4Revision History
  6. 5Specifications
    1. 5.1  Absolute Maximum Ratings
    2. 5.2  ESD Ratings
    3. 5.3  Recommended Operating Conditions
    4. 5.4  Thermal Information
    5. 5.5  Transmitter Electrical Characteristics
    6. 5.6  RF ADC Electrical Characteristics
    7. 5.7  PLL/VCO/Clock Electrical Characteristics
    8. 5.8  Digital Electrical Characteristics
    9. 5.9  Power Supply Electrical Characteristics
    10. 5.10 Timing Requirements
    11. 5.11 Switching Characteristics
    12. 5.12 Typical Characteristics
      1. 5.12.1  RX Typical Characteristics 30 MHz and 400 MHz
      2. 5.12.2  RX Typical Characteristics at 800MHz
      3. 5.12.3  RX Typical Characteristics 1.75GHz to 1.9GHz
      4. 5.12.4  RX Typical Characteristics 2.6GHz
      5. 5.12.5  RX Typical Characteristics 3.5GHz
      6. 5.12.6  RX Typical Characteristics 4.9GHz
      7. 5.12.7  TX Typical Characteristics at 30MHz and 400MHz
      8. 5.12.8  TX Typical Characteristics at 800MHz
      9. 5.12.9  TX Typical Characteristics at 1.8GHz
      10. 5.12.10 TX Typical Characteristics at 2.6GHz
      11. 5.12.11 TX Typical Characteristics at 3.5GHz
      12. 5.12.12 TX Typical Characteristics at 4.9GHz
      13. 5.12.13 TX Typical Characteristics at 7.1GHz
      14. 5.12.14 PLL and Clock Typical Characteristics
  7. 6Device and Documentation Support
    1. 6.1 Receiving Notification of Documentation Updates
    2. 6.2 Support Resources
    3. 6.3 Trademarks
    4. 6.4 Electrostatic Discharge Caution
    5. 6.5 Glossary
  8. 7Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

TX Typical Characteristics at 2.6GHz

Typical values at TA = +25°C with nominal supplies. Unless otherwise noted, TX input data rate = 491.52MSPS, fDAC = 11796.48MSPS, interleave mode, AOUT = –1 dBFS, 1st Nyquist zone output, Internal PLL, fREF = 491.52MSPS, 24x Interpolation, DSA = 0 dB, Sin(x)/x enabled, DSA calibrated.

GUID-A4D73C7D-6531-498D-AF24-3E17110D7C32-low.gif
Including PCB and cable losses, Aout = -0.5dBFS, DSA = 0, 2.6 GHz matching
Figure 5-353 TX Full Scale vs RF Frequency at 5898.24MSPS
GUID-52502B9D-7AC5-469A-9C21-2C6812878056-low.gif
Including PCB and cable losses, Aout = -0.5dBFS, DSA = 0, 2.6 GHz matching
Figure 5-355 TX Full Scale vs RF Frequency at 11796.48MSPS
GUID-20220627-SS0I-X5CN-TSJX-RK4MJCQMPGSQ-low.svg
fDAC = 8847.36 MSPS, Aout = -0.5dBFS, matching 2.6 GHz
Figure 5-357 TX Output Power vs DSA Setting and Channel at 2.6 GHz
GUID-AF4BC054-953E-47AD-9633-C46172B3B593-low.gif
fDAC=8847.36MSPS, straight mode, matching at 2.6 GHz
Differential Gain Error = POUT(DSA Setting – 1) – POUT(DSA Setting) + 1
Figure 5-359 TX Calibrated Differential Gain Error vs DSA Setting and Channel at 2.6 GHz
GUID-8125C38D-6956-4757-AC96-06127F6182B9-low.gif
fDAC = 8847.36MSPS, straight mode, matching at 2.6 GHz
Integrated Gain Error = POUT(DSA Setting) – POUT(DSA Setting = 0) + (DSA Setting)
Figure 5-361 TX Calibrated Integrated Gain Error vs DSA Setting and Channel at 2.6 GHz
GUID-BDD0FC4E-72B7-47F8-A33D-3BD55845A9DD-low.gif
fDAC = 8847.36MSPS, straight mode, matching at 2.6 GHz, channel with the median variation over DSA setting at 25°C
Differential Gain Error = POUT(DSA Setting – 1) – POUT(DSA Setting) + 1
Figure 5-363 TX Calibrated Differential Gain Error vs DSA Setting and Temperature at 2.6 GHz
GUID-F610FE5B-D43C-47FE-AEA0-95CF0A51B73E-low.gif
fDAC = 8847.36MSPS, straight mode, matching at 2.6 GHz, channel with the median variation over DSA setting at 25°C
Integrated Gain Error = POUT(DSA Setting) – POUT(DSA Setting = 0) + (DSA Setting)
Figure 5-365 TX Calibrated Integrated Gain Error vs DSA Setting and Temperature at 2.6 GHz
GUID-B2552CF2-9F77-4D69-B61A-F6914064E9DB-low.gif
fDAC = 8847.36MSPS, straight mode, matching at 2.6 GHz
Differential Phase Error = PhaseOUT(DSA Setting – 1) – PhaseOUT(DSA Setting)
Phase DNL spike may occur at any DSA setting.
Figure 5-367 TX Calibrated Differential Phase Error vs DSA Setting and Channel at 2.6 GHz
GUID-28FCF531-58FC-4A5B-9041-08AF389ED9B0-low.gif
fDAC = 8847.36MSPS, straight mode, matching at 2.6 GHz
Integrated Phase Error = Phase(DSA Setting) – Phase(DSA Setting = 0)
Figure 5-369 TX Calibrated Integrated Phase Error vs DSA Setting and Channel at 2.6 GHz
GUID-A94CF401-CDAD-488F-9512-4EAA49F81927-low.gif
fDAC = 8847.36MSPS, straight mode, matching at 2.6 GHz, channel with the median variation over DSA setting at 25°C
Differential Phase Error = PhaseOUT(DSA Setting – 1) – PhaseOUT(DSA Setting)
Figure 5-371 TX Calibrated Differential Phase Error vs DSA Setting and Temperature at 2.6 GHz
GUID-4EC574AB-4A6F-4404-BE12-15FEDE2C557E-low.gif
fDAC = 8847.36MSPS, straight mode, matching at 2.6 GHz, channel with the median variation over DSA setting at 25°C
Integrated Phase Error = Phase(DSA Setting) – Phase(DSA Setting = 0)
Figure 5-373 TX Calibrated Integrated Phase Error vs DSA Setting and Temperature at 2.6 GHz
GUID-282DB5B0-3D2B-45D0-91E5-6E4D0205E8B1-low.gif
fDAC = 8847.36MSPS, straight mode, fCENTER = 2.6 GHz, matching at 2.6 GHz, –13 dBFS each tone
Figure 5-375 TX IMD3 vs DSA Setting at 2.6 GHz
GUID-0B6BDC4F-5EDA-45B4-8AD1-C177104513EB-low.gif
fDAC = 8847.36MSPS, straight mode, fCENTER = 2.6 GHz, matching at 2.6 GHz, –13 dBFS each tone, worst channel.
Figure 5-377 TX IMD3 vs Tone Spacing and Temperature at 2.6 GHz
GUID-AA24E1F9-B889-4E17-9AFC-6656C84C9CCC-low.gif
fDAC = 8847.36MSPS, straight mode, fCENTER = 2.6 GHz, matching at 2.6 GHz, –13 dBFS each tone
Figure 5-379 TX IMD3 vs Tone Spacing and Temperature
GUID-ED8CECD3-6B87-4979-93AE-F9D8CA77D371-low.gif
TM1.1, POUT_RMS = –13 dBFS
Figure 5-381 TX 20-MHz LTE Output Spectrum at 2.6 GHz (Band 41)
GUID-AA9E0D7B-828F-4DC9-B5F4-4A8A3F5D3A07-low.gif
Matching at 2.6 GHz, single carrier 20-MHz BW TM1.1 LTE
Figure 5-383 TX 20-MHz LTE alt-ACPR vs Digital Level at 2.6 GHz
GUID-0FC1D202-6557-4BCF-9B95-C4CF778021E4-low.gif
Matching at 2.6 GHz, single carrier 100-MHz BW TM1.1 NR
Figure 5-385 TX 100-MHz NR ACPR vs Digital Level at 2.6 GHz
GUID-30A2018E-3998-476B-A349-4EE897BEF5C7-low.gif
Matching at 2.6 GHz, single carrier 20-MHz BW TM1.1 LTE
Figure 5-387 TX 20-MHz LTE ACPR vs DSA at 2.6 GHz
GUID-C842473D-A22F-44C8-9597-534EEB344E1C-low.gif
Matching at 2.6 GHz, single carrier 100-MHz BW TM1.1 NR
Figure 5-389 TX 100-MHz NR ACPR vs DSA at 2.6 GHz
GUID-D7A52CD0-F284-41F6-BF71-6D618D0431AA-low.gif
Matching at 2.6 GHz, fDAC = 11.79648GSPS, interleave mode, normalized to output power at harmonic frequency
Figure 5-391 TX HD2 vs Digital Amplitude and Output Frequency at 2.6 GHz
GUID-20210709-CA0I-G2HN-F4FQ-ZL7VVFGMKN3J-low.png
Inband = 2600MHz ± 600MHz, fDAC = 12GSPS, not including FS/3 and FS/4, external clock mode, non-interleave mode
Figure 5-393 Two Tone Inband SFDR vs Digital Amplitude at 2.6 GHz
GUID-8B217B8E-AF5B-4027-883B-5C198FC48A0D-low.gif
fDAC = 8847.36MSPS, interleave mode, 2.6 GHz matching, includes PCB and cable losses. ILn = fS/n ± fOUT.
Figure 5-395 TX Single Tone (–12 dBFS) Output Spectrum at 2.6 GHz (0-fDAC)
GUID-68BB565A-BBE3-42EF-9D6D-686381B1EE42-low.gif
fDAC = 8847.36MSPS, interleave mode, 2.6 GHz matching, includes PCB and cable losses. ILn = fS/n ± fOUT.
Figure 5-397 TX Single Tone (–6 dBFS) Output Spectrum at 2.6 GHz (0-fDAC)
GUID-0EA1A9DE-1B0E-4ECB-B939-0488ADA80C35-low.gif
fDAC = 8847.36MSPS, interleave mode, 2.6 GHz matching, includes PCB and cable losses. ILn = fS/n ± fOUT.
Figure 5-399 TX Single Tone (–1 dBFS) Output Spectrum at 2.6 GHz (0-fDAC)
GUID-71E21490-49A8-4824-ACD5-046975154149-low.gif
fDAC = 8847.36MSPS, straight mode, 2.6 GHz matching, includes PCB and cable losses. ILn = fS/n ± fOUT and is due to mixing with digital clocks.
Figure 5-401 TX Single Tone (–12 dBFS) Output Spectrum at 2.6 GHz (0-fDAC)
GUID-C3DCFDC1-97C3-4B36-9878-C7B855073421-low.gif
fDAC = 8847.36MSPS, straight mode, 2.6 GHz matching, includes PCB and cable losses. ILn = fS/n ± fOUT and is due to mixing with digital clocks.
Figure 5-403 TX Single Tone (–6 dBFS) Output Spectrum at 2.6 GHz (0-fDAC)
GUID-EB23E1B9-3DAE-4629-A2FC-A025065572A2-low.gif
fDAC = 8847.36MSPS, straight mode, 2.6 GHz matching, includes PCB and cable losses. ILn = fS/n ± fOUT and is due to mixing with digital clocks.
Figure 5-405 TX Single Tone (–1 dBFS) Output Spectrum at 2.6 GHz (0-fDAC)
GUID-20210708-CA0I-D8WK-BPTQ-GT64SQCNBKK0-low.png
fDAC = 9000MSPS, external clock mode, non-interleave mode
Figure 5-407 TX Dual Tone Output Spectrum at 2.6 GHz, -7dBFS each (0 - DAC)
GUID-20210708-CA0I-CWLS-HBMQ-SLXPXBZ1WN68-low.png
fDAC = 9000MSPS, external clock mode, non-interleave mode
Figure 5-409 TX Dual Tone Output Spectrum at 2.6 GHz, -13dBFS each (0 - DAC)
GUID-20210708-CA0I-KSP7-KZS9-GPSFG1FMTL7L-low.svg
fDAC = 9000MSPS, external clock mode, non-interleave mode
Figure 5-411 TX Dual Tone Output Spectrum at 2.6 GHz, -30dBFS each (0 - DAC)
GUID-2DA4139B-2888-4587-91E5-C96138D5D9D1-low.gif
fDAC = 11796.48MSPS, interleave mode, 2.6 GHz matching. 40-MHz offset from tone. Output Power = –1 dBFS. All supplies simultaneously at MIN, TYP, or MAX voltages.
Figure 5-413 TX Output Noise vs Supply Voltage at 2.6 GHz
GUID-20210628-CA0I-SNWC-TFFF-DQGLDWV5WRZL-low.png
fDAC = 9000MSPS, non-interleave mode, external clock mode
Figure 5-415 IMD3 vs Tone Spacing and Channel at 2.6 GHz
GUID-20220629-SS0I-NKCH-4ZCP-NV5LKRQNSGZB-low.svg
fDAC = 9000MSPS, non-interleave mode, external clock mode
Figure 5-417 IMD3 vs Digital Amplitude and Channel at 2.6 GHz
GUID-20220629-SS0I-ZDLN-LKRM-W83CKHXR6G4J-low.svg
fDAC = 9000MSPS, non-interleave mode, external clock mode, 50MHz offset
Figure 5-419 NSD vs Digital Amplitude and Channel at 2.6 GHz
GUID-20210707-CA0I-NBCS-C3WC-FXRJRJHKSDT2-low.png
fDAC = fCLK = 9000MSPS, non-interleave mode
Figure 5-421 External Clock Additive Phase Noise at 2.6 GHz
GUID-2F1C1BEE-275F-4749-93EF-A62E28E81F2E-low.gif
Including PCB and cable losses, Aout = -0.5dBFS, DSA = 0, 2.6 GHz matching
Figure 5-354 TX Full Scale vs RF Frequency at 8847.36MSPS
GUID-EB5E9383-3B55-41ED-980A-9DA3F400A64B-low.gif
fDAC = 8847.36MSPS, interleave mode, including PCB and cable losses, Aout = -0.5dBFS, DSA = 0, 2.6 GHz matching
Figure 5-356 TX Output Fullscale vs Output Frequency and Channel
GUID-A557482E-B6E1-4693-90FC-D0DCB7C488A5-low.gif
fDAC=8847.36MSPS, straight mode, matching at 2.6 GHz
Differential Gain Error = POUT(DSA Setting – 1) – POUT(DSA Setting) + 1
Figure 5-358 TX Uncalibrated Differential Gain Error vs DSA Setting and Channel at 2.6 GHz
GUID-104FF6BE-8988-415A-B192-452F222706E7-low.gif
fDAC=8847.36MSPS, straight mode, matching at 2.6 GHz
Integrated Gain Error = POUT(DSA Setting) – POUT(DSA Setting = 0) + (DSA Setting)
Figure 5-360 TX Uncalibrated Integrated Gain Error vs DSA Setting and Channel at 2.6 GHz
GUID-9D25DB19-63BE-42F2-A4F8-C3F9A416DB40-low.gif
fDAC = 8847.36MSPS, straight mode, matching at 2.6 GHz, channel with the median variation over DSA setting at 25°C
Differential Gain Error = POUT(DSA Setting – 1) – POUT(DSA Setting) + 1
Figure 5-362 TX Uncalibrated Differential Gain Error vs DSA Setting and Temperature at 2.6 GHz
GUID-60D484D5-2C68-4CF1-8F31-40D9E10ADD0E-low.gif
fDAC = 8847.36MSPS, straight mode, matching at 2.6 GHz, channel with the median variation over DSA setting at 25°C
Integrated Gain Error = POUT(DSA Setting) – POUT(DSA Setting = 0) + (DSA Setting)
Figure 5-364 TX Uncalibrated Integrated Gain Error vs DSA Setting and Temperature at 2.6 GHz
GUID-01C161E0-4738-432B-8664-1C5F705C47BA-low.gif
fDAC = 8847.36MSPS, straight mode, matching at 2.6 GHz
Differential Phase Error = PhaseOUT(DSA Setting – 1) – PhaseOUT(DSA Setting)
Figure 5-366 TX Uncalibrated Differential Phase Error vs DSA Setting and Channel at 2.6 GHz
GUID-30CDB61E-C073-4291-AC9E-10541E448480-low.gif
fDAC = 8847.36MSPS, straight mode, matching at 2.6 GHz
Integrated Phase Error = Phase(DSA Setting) – Phase(DSA Setting = 0)
Figure 5-368 TX Uncalibrated Integrated Phase Error vs DSA Setting and Channel at 2.6 GHz
GUID-1BCFC11E-0ADC-45CC-96C8-F9B9CBCC6D12-low.gif
fDAC = 8847.36MSPS, straight mode, matching at 2.6 GHz, channel with the median variation over DSA setting at 25°C
Differential Phase Error = PhaseOUT(DSA Setting – 1) – PhaseOUT(DSA Setting)
Figure 5-370 TX Uncalibrated Differential Phase Error vs DSA Setting and Temperature at 2.6 GHz
GUID-7B63683D-E899-4E29-B055-62B0D783B377-low.gif
fDAC = 8847.36MSPS, straight mode, matching at 2.6 GHz, channel with the medium variation over DSA setting at 25°C
Integrated Phase Error = Phase(DSA Setting) – Phase(DSA Setting = 0)
Figure 5-372 TX Uncalibrated Integrated Phase Error vs DSA Setting and Temperature at 2.6 GHz
GUID-C0B851CE-C3F9-4A2A-954F-1EED2BD93343-low.gif
fDAC = 8847.36MSPS, straight mode, matching at 2.6 GHz, POUT = –13 dBFS
Figure 5-374 TX Output Noise vs Channel and Attenuation at 2.6 GHz
GUID-40822EE4-391D-4055-B995-0C789184CD7A-low.gif
fDAC = 8847.36MSPS, straight mode, fCENTER = 2.6 GHz, matching at 2.6 GHz, –13 dBFS each tone
Figure 5-376 TX IMD3 vs Tone Spacing and Channel at 2.6 GHz
GUID-D7F04356-7D73-43AF-A8AF-503288E11D59-low.gif
fDAC = 8847.36MSPS, straight mode, fCENTER = 2.6 GHz, fSPACING = 20 MHz, matching at 2.6 GHz
Figure 5-378 TX IMD3 vs Digital Level at 2.6 GHz
GUID-F9E98816-8075-4D51-95E1-8A59BF8DB139-low.gif
Matching at 2.6 GHz, Single tone, fDAC = 11.79648GSPS, interleave mode, 40-MHz offset
Figure 5-380 TX Single Tone Output Noise vs Frequency and Amplitude at 2.6 GHz
GUID-605F15FF-7419-458E-B02C-B473065E139F-low.gif
Matching at 2.6 GHz, single carrier 20-MHz BW TM1.1 LTE
Figure 5-382 TX 20-MHz LTE ACPR vs Digital Level at 2.6 GHz
GUID-3EF08356-4D99-49DD-9579-637A15D16500-low.gif
Matching at 2.6 GHz, single carrier 20-MHz BW TM1.1 LTE
Figure 5-384 TX 20-MHz LTE alt2-ACPR vs Digital Level at 2.6 GHz
GUID-9104BAA5-61D1-44EF-AF76-F7CB320D9F5A-low.gif
Matching at 2.6 GHz, single carrier 100-MHz BW TM1.1 NR
Figure 5-386 TX 100-MHz NR alt-ACPR vs Digital Level at 2.6 GHz
GUID-416B757A-C986-4843-8A25-E022D3BFC794-low.gif
Matching at 2.6 GHz, single carrier 20-MHz BW TM1.1 LTE
Figure 5-388 TX 20-MHz LTE alt-ACPR vs DSA at 2.6 GHz
GUID-86C665B1-1709-4BFE-BB95-E67F48FA1F74-low.gif
Matching at 2.6 GHz, single carrier 100-MHz BW TM1.1 NR
Figure 5-390 TX 100-MHz NR alt-ACPR vs DSA at 2.6 GHz
GUID-871C3F0B-F47F-4EF7-8A95-EF7CDE95FE35-low.gif
Matching at 2.6 GHz, fDAC = 11.79648GSPS, interleave mode, normalized to output power at harmonic frequency
Figure 5-392 TX HD3 vs Digital Amplitude and Output Frequency at 2.6 GHz
GUID-20210709-CA0I-WMHD-N6CM-6RXRDHGPMRZL-low.png
Inband = 2600MHz ± 600MHz, fDAC = 12GSPS, external clock mode, non-interleave mode
Figure 5-394 Two Tone Inband Fixed Spurs vs Digital Amplitude at 2.6 GHz
GUID-666B68FA-BBC5-4158-9A91-4F1CCA73A0B3-low.gif
fDAC = 8847.36MSPS, interleave mode, 2.6 GHz matching, includes PCB and cable losses
Figure 5-396 TX Single Tone (–12 dBFS) Output Spectrum at 2.6 GHz (±300 MHz)
GUID-840EB66F-D8CC-4FE1-94EC-FD140D9C8771-low.gif
fDAC = 8847.36MSPS, interleave mode, 2.6 GHz matching, includes PCB and cable losses
Figure 5-398 TX Single Tone (–6 dBFS) Output Spectrum at 2.6 GHz (±300 MHz)
GUID-23434A22-76EF-4A4F-B9A8-CFEC55278045-low.gif
fDAC = 8847.36MSPS, interleave mode, 2.6 GHz matching, includes PCB and cable losses
Figure 5-400 TX Single Tone (–1 dBFS) Output Spectrum at 2.6 GHz (±300 MHz)
GUID-9F5C2251-53F9-4F26-8C69-27E09677ADA9-low.gif
fDAC = 8847.36MSPS, straight mode, 2.6 GHz matching, includes PCB and cable losses
Figure 5-402 TX Single Tone (–12 dBFS) Output Spectrum at 2.6 GHz (±300 MHz)
GUID-23AC9FB9-73A4-46DF-A20A-6ECE8B95C8E2-low.gif
fDAC = 8847.36MSPS, straight mode, 2.6 GHz matching, includes PCB and cable losses
Figure 5-404 TX Single Tone (–6 dBFS) Output Spectrum at 2.6 GHz (±300 MHz)
GUID-CC19DC06-13B8-4240-9935-ED04513E3E9B-low.gif
fDAC = 8847.36MSPS, straight mode, 2.6 GHz matching, includes PCB and cable losses
Figure 5-406 TX Single Tone (–1 dBFS) Output Spectrum at 2.6 GHz (±300 MHz)
GUID-20210708-CA0I-4VNG-TX25-2SKJP7LR1574-low.svg
fDAC = 9000MSPS, external clock mode, non-interleave mode
Figure 5-408 TX Dual Tone Output Spectrum at 2.6 GHz, -7dBFS each (±600 MHz)
GUID-20210708-CA0I-ZZRB-K9GQ-K9H9M1SQJ3QP-low.png
fDAC = 9000MSPS, external clock mode, non-interleave mode
Figure 5-410 TX Dual Tone Output Spectrum at 2.6 GHz, -13dBFS each (±600 MHz)
GUID-20210708-CA0I-XPT4-MDFG-WCNM5T12BPBK-low.svg
fDAC = 9000MSPS, external clock mode, non-interleave mode
Figure 5-412 TX Dual Tone Output Spectrum at 2.6 GHz, -30dBFS each (±600 MHz)
GUID-DE412DDF-3270-4677-9A5B-E49E3734F449-low.gif
fDAC = 11796.48MSPS, interleave mode, 2.6 GHz matching. 40-MHz offset from tone. Output Power = –13 dBFS. All supplies simultaneously at MIN, TYP, or MAX voltages.
Figure 5-414 TX IMD3 vs Supply Voltage at 2.6 GHz
GUID-20210628-CA0I-P5KR-1DR2-PK2NQ24CJ1LZ-low.svg
fDAC = 9000MSPS, non-interleave mode, external clock mode
Figure 5-416 IMD3 vs Tone Spacing and Amplitude at 2.6 GHz
GUID-20210628-CA0I-1CG5-SDL4-4F2WRTNWDG6Q-low.svg
fDAC = 9000MSPS, non-interleave mode, external clock mode
Figure 5-418 IMD3 vs Digital Amplitude and Temperature at 2.6 GHz
GUID-20210628-CA0I-ZD7J-BH2H-QCHVCNFMW6DC-low.png
fDAC = 9000MSPS, non-interleave mode, external clock mode, 50MHz offset
Figure 5-420 NSD vs Digital Amplitude and Temperature at 2.6 GHz