SBASAT0A September   2025  – November 2025 AMC0380D

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Device Comparison Table
  6. Pin Configuration and Functions
  7. Specifications
    1. 6.1  Absolute Maximum Ratings
    2. 6.2  ESD Ratings
    3. 6.3  Recommended Operating Conditions
    4. 6.4  Thermal Information
    5. 6.5  Power Ratings
    6. 6.6  Insulation Specifications
    7. 6.7  Safety-Related Certifications
    8. 6.8  Safety Limiting Values
    9. 6.9  Electrical Characteristics
    10. 6.10 Switching Characteristics
    11. 6.11 Timing Diagram
    12. 6.12 Insulation Characteristics Curves
    13. 6.13 Typical Characteristics
  8. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 Analog Input
      2. 7.3.2 Isolation Channel Signal Transmission
      3. 7.3.3 Analog Output
    4. 7.4 Device Functional Modes
  9. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Application
      1. 8.2.1 Design Requirements
      2. 8.2.2 Detailed Design Procedure
        1. 8.2.2.1 Input Filter Design
        2. 8.2.2.2 Differential to Single-Ended Output Conversion
      3. 8.2.3 Application Curve
    3. 8.3 Best Design Practices
    4. 8.4 Power Supply Recommendations
    5. 8.5 Layout
      1. 8.5.1 Layout Guidelines
      2. 8.5.2 Layout Example
  10. Device and Documentation Support
    1. 9.1 Documentation Support
      1. 9.1.1 Related Documentation
    2. 9.2 Receiving Notification of Documentation Updates
    3. 9.3 Support Resources
    4. 9.4 Trademarks
    5. 9.5 Electrostatic Discharge Caution
    6. 9.6 Glossary
  11. 10Revision History
  12. 11Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Typical Application

The following image illustrates a simplified schematic of a circuit that senses the line voltages of a three-phase AC system. All three voltages are measured against neutral. This configuration allows the three AMC0380D devices to share a common isolated power supply on the input side.

The three AMC0380D devices (device 1, device 2, and device 3) are connected directly to phase L1, L2, and L3, respectively. On the opposite side of the isolation barrier, each device outputs a voltage proportional to the phase-to-neutral voltage. A common VDD1 supply is generated from the low-voltage side by an isolated DC/DC converter circuit. A low-cost design is based on the push-pull driver SN6501 and a transformer that supports the desired isolation voltage ratings.

AMC0380D Using the AMC0380D in a Typical Application Figure 8-1 Using the AMC0380D in a Typical Application