SWRS222B December   2018  – April 2020 AWR1843

PRODUCTION DATA.  

  1. Device Overview
    1. 1.1 Features
    2. 1.2 Applications
    3. 1.3 Description
    4. 1.4 Functional Block Diagram
  2. Revision History
  3. Device Comparison
    1. 3.1 Related Products
  4. Terminal Configuration and Functions
    1. 4.1 Pin Diagram
    2. 4.2 Pin Attributes
      1. Table 4-3 PAD IO Register Bit Descriptions
    3. 4.3 Signal Descriptions
      1. Table 4-4 Signal Descriptions - Digital
      2. Table 4-5 Signal Descriptions - Analog
  5. Specifications
    1. 5.1  Absolute Maximum Ratings
    2. 5.2  ESD Ratings
    3. 5.3  Power-On Hours (POH)
    4. 5.4  Recommended Operating Conditions
    5. 5.5  Power Supply Specifications
    6. 5.6  Power Consumption Summary
    7. 5.7  RF Specification
    8. 5.8  CPU Specifications
    9. 5.9  Thermal Resistance Characteristics for FCBGA Package [ABL0161]
    10. 5.10 Timing and Switching Characteristics
      1. 5.10.1  Power Supply Sequencing and Reset Timing
      2. 5.10.2  Input Clocks and Oscillators
        1. 5.10.2.1 Clock Specifications
      3. 5.10.3  Multibuffered / Standard Serial Peripheral Interface (MibSPI)
        1. 5.10.3.1 Peripheral Description
        2. 5.10.3.2 MibSPI Transmit and Receive RAM Organization
          1. Table 5-7 SPI Timing Conditions
          2. Table 5-8 SPI Master Mode Switching Parameters (CLOCK PHASE = 0, SPICLK = output, SPISIMO = output, and SPISOMI = input)
          3. Table 5-9 SPI Master Mode Switching Parameters (CLOCK PHASE = 1, SPICLK = output, SPISIMO = output, and SPISOMI = input)
        3. 5.10.3.3 SPI Slave Mode I/O Timings
          1. Table 5-10 SPI Slave Mode Switching Parameters (SPICLK = input, SPISIMO = input, and SPISOMI = output)
        4. 5.10.3.4 Typical Interface Protocol Diagram (Slave Mode)
      4. 5.10.4  LVDS Interface Configuration
        1. 5.10.4.1 LVDS Interface Timings
      5. 5.10.5  General-Purpose Input/Output
        1. Table 5-12 Switching Characteristics for Output Timing versus Load Capacitance (CL)
      6. 5.10.6  Controller Area Network Interface (DCAN)
        1. Table 5-13 Dynamic Characteristics for the DCANx TX and RX Pins
      7. 5.10.7  Controller Area Network - Flexible Data-rate (CAN-FD)
        1. Table 5-14 Dynamic Characteristics for the CANx TX and RX Pins
      8. 5.10.8  Serial Communication Interface (SCI)
        1. Table 5-15 SCI Timing Requirements
      9. 5.10.9  Inter-Integrated Circuit Interface (I2C)
        1. Table 5-16 I2C Timing Requirements
      10. 5.10.10 Quad Serial Peripheral Interface (QSPI)
        1. Table 5-17 QSPI Timing Conditions
        2. Table 5-18 Timing Requirements for QSPI Input (Read) Timings
        3. Table 5-19 QSPI Switching Characteristics
      11. 5.10.11 ETM Trace Interface
        1. Table 5-20 ETMTRACE Timing Conditions
        2. Table 5-21 ETM TRACE Switching Characteristics
      12. 5.10.12 Data Modification Module (DMM)
        1. Table 5-22 DMM Timing Requirements
      13. 5.10.13 JTAG Interface
        1. Table 5-23 JTAG Timing Conditions
        2. Table 5-24 Timing Requirements for IEEE 1149.1 JTAG
        3. Table 5-25 Switching Characteristics Over Recommended Operating Conditions for IEEE 1149.1 JTAG
  6. Detailed Description
    1. 6.1 Overview
    2. 6.2 Functional Block Diagram
    3. 6.3 Subsystems
      1. 6.3.1 RF and Analog Subsystem
        1. 6.3.1.1 Clock Subsystem
        2. 6.3.1.2 Transmit Subsystem
        3. 6.3.1.3 Receive Subsystem
      2. 6.3.2 Processor Subsystem
      3. 6.3.3 Automotive Interface
      4. 6.3.4 Master Subsystem Cortex-R4F Memory Map
      5. 6.3.5 DSP Subsystem Memory Map
    4. 6.4 Other Subsystems
      1. 6.4.1 ADC Channels (Service) for User Application
        1. Table 6-3 GP-ADC Parameter
  7. Monitoring and Diagnostics
    1. 7.1 Monitoring and Diagnostic Mechanisms
      1. 7.1.1 Error Signaling Module
  8. Applications, Implementation, and Layout
    1. 8.1 Application Information
    2. 8.2 Short- and Medium-Range Radar
    3. 8.3 Reference Schematic
    4. 8.4 Layout
      1. 8.4.1 Layout Guidelines
      2. 8.4.2 Stackup Details
  9. Device and Documentation Support
    1. 9.1 Device Nomenclature
    2. 9.2 Tools and Software
    3. 9.3 Documentation Support
    4. 9.4 Support Resources
    5. 9.5 Trademarks
    6. 9.6 Electrostatic Discharge Caution
    7. 9.7 Glossary
  10. 10Mechanical, Packaging, and Orderable Information
    1. 10.1 Packaging Information

Package Options

Refer to the PDF data sheet for device specific package drawings

Mechanical Data (Package|Pins)
  • ABL|161
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Device Nomenclature

To designate the stages in the product development cycle, TI assigns prefixes to the part numbers of all microprocessors (MPUs) and support tools. Each device has one of three prefixes: X, P, or null (no prefix) (for example, AWR1843). Texas Instruments recommends two of three possible prefix designators for its support tools: TMDX and TMDS. These prefixes represent evolutionary stages of product development from engineering prototypes (TMDX) through fully qualified production devices and tools (TMDS).

Device development evolutionary flow:

    XExperimental device that is not necessarily representative of the final device's electrical specifications and may not use production assembly flow.
    PPrototype device that is not necessarily the final silicon die and may not necessarily meet final electrical specifications.
    nullProduction version of the silicon die that is fully qualified.

Support tool development evolutionary flow:

    TMDXDevelopment-support product that has not yet completed Texas Instruments internal qualification testing.
    TMDSFully-qualified development-support product.

X and P devices and TMDX development-support tools are shipped against the following disclaimer:

"Developmental product is intended for internal evaluation purposes."

Production devices and TMDS development-support tools have been characterized fully, and the quality and reliability of the device have been demonstrated fully. TI's standard warranty applies.

Predictions show that prototype devices (X or P) have a greater failure rate than the standard production devices. Texas Instruments recommends that these devices not be used in any production system because their expected end-use failure rate still is undefined. Only qualified production devices are to be used.

TI device nomenclature also includes a suffix with the device family name. This suffix indicates the package type (for example, ABL0161ALB0161), the temperature range (for example, blank is the default commercial temperature range). Figure 9-1 provides a legend for reading the complete device name for any AWR1843 device.

For orderable part numbers of AWR1843 devices in the ABL0161 package types, see the Package Option Addendum of this document, the TI website (www.ti.com), or contact your TI sales representative.

For additional description of the device nomenclature markings on the die, see the AWR1843 Device Errata.

AWR1843 dev_nomen_awr18_notemp.gifFigure 9-1 Device Nomenclature