SWRS222B December   2018  – April 2020 AWR1843

PRODUCTION DATA.  

  1. Device Overview
    1. 1.1 Features
    2. 1.2 Applications
    3. 1.3 Description
    4. 1.4 Functional Block Diagram
  2. Revision History
  3. Device Comparison
    1. 3.1 Related Products
  4. Terminal Configuration and Functions
    1. 4.1 Pin Diagram
    2. 4.2 Pin Attributes
      1. Table 4-3 PAD IO Register Bit Descriptions
    3. 4.3 Signal Descriptions
      1. Table 4-4 Signal Descriptions - Digital
      2. Table 4-5 Signal Descriptions - Analog
  5. Specifications
    1. 5.1  Absolute Maximum Ratings
    2. 5.2  ESD Ratings
    3. 5.3  Power-On Hours (POH)
    4. 5.4  Recommended Operating Conditions
    5. 5.5  Power Supply Specifications
    6. 5.6  Power Consumption Summary
    7. 5.7  RF Specification
    8. 5.8  CPU Specifications
    9. 5.9  Thermal Resistance Characteristics for FCBGA Package [ABL0161]
    10. 5.10 Timing and Switching Characteristics
      1. 5.10.1  Power Supply Sequencing and Reset Timing
      2. 5.10.2  Input Clocks and Oscillators
        1. 5.10.2.1 Clock Specifications
      3. 5.10.3  Multibuffered / Standard Serial Peripheral Interface (MibSPI)
        1. 5.10.3.1 Peripheral Description
        2. 5.10.3.2 MibSPI Transmit and Receive RAM Organization
          1. Table 5-7 SPI Timing Conditions
          2. Table 5-8 SPI Master Mode Switching Parameters (CLOCK PHASE = 0, SPICLK = output, SPISIMO = output, and SPISOMI = input)
          3. Table 5-9 SPI Master Mode Switching Parameters (CLOCK PHASE = 1, SPICLK = output, SPISIMO = output, and SPISOMI = input)
        3. 5.10.3.3 SPI Slave Mode I/O Timings
          1. Table 5-10 SPI Slave Mode Switching Parameters (SPICLK = input, SPISIMO = input, and SPISOMI = output)
        4. 5.10.3.4 Typical Interface Protocol Diagram (Slave Mode)
      4. 5.10.4  LVDS Interface Configuration
        1. 5.10.4.1 LVDS Interface Timings
      5. 5.10.5  General-Purpose Input/Output
        1. Table 5-12 Switching Characteristics for Output Timing versus Load Capacitance (CL)
      6. 5.10.6  Controller Area Network Interface (DCAN)
        1. Table 5-13 Dynamic Characteristics for the DCANx TX and RX Pins
      7. 5.10.7  Controller Area Network - Flexible Data-rate (CAN-FD)
        1. Table 5-14 Dynamic Characteristics for the CANx TX and RX Pins
      8. 5.10.8  Serial Communication Interface (SCI)
        1. Table 5-15 SCI Timing Requirements
      9. 5.10.9  Inter-Integrated Circuit Interface (I2C)
        1. Table 5-16 I2C Timing Requirements
      10. 5.10.10 Quad Serial Peripheral Interface (QSPI)
        1. Table 5-17 QSPI Timing Conditions
        2. Table 5-18 Timing Requirements for QSPI Input (Read) Timings
        3. Table 5-19 QSPI Switching Characteristics
      11. 5.10.11 ETM Trace Interface
        1. Table 5-20 ETMTRACE Timing Conditions
        2. Table 5-21 ETM TRACE Switching Characteristics
      12. 5.10.12 Data Modification Module (DMM)
        1. Table 5-22 DMM Timing Requirements
      13. 5.10.13 JTAG Interface
        1. Table 5-23 JTAG Timing Conditions
        2. Table 5-24 Timing Requirements for IEEE 1149.1 JTAG
        3. Table 5-25 Switching Characteristics Over Recommended Operating Conditions for IEEE 1149.1 JTAG
  6. Detailed Description
    1. 6.1 Overview
    2. 6.2 Functional Block Diagram
    3. 6.3 Subsystems
      1. 6.3.1 RF and Analog Subsystem
        1. 6.3.1.1 Clock Subsystem
        2. 6.3.1.2 Transmit Subsystem
        3. 6.3.1.3 Receive Subsystem
      2. 6.3.2 Processor Subsystem
      3. 6.3.3 Automotive Interface
      4. 6.3.4 Master Subsystem Cortex-R4F Memory Map
      5. 6.3.5 DSP Subsystem Memory Map
    4. 6.4 Other Subsystems
      1. 6.4.1 ADC Channels (Service) for User Application
        1. Table 6-3 GP-ADC Parameter
  7. Monitoring and Diagnostics
    1. 7.1 Monitoring and Diagnostic Mechanisms
      1. 7.1.1 Error Signaling Module
  8. Applications, Implementation, and Layout
    1. 8.1 Application Information
    2. 8.2 Short- and Medium-Range Radar
    3. 8.3 Reference Schematic
    4. 8.4 Layout
      1. 8.4.1 Layout Guidelines
      2. 8.4.2 Stackup Details
  9. Device and Documentation Support
    1. 9.1 Device Nomenclature
    2. 9.2 Tools and Software
    3. 9.3 Documentation Support
    4. 9.4 Support Resources
    5. 9.5 Trademarks
    6. 9.6 Electrostatic Discharge Caution
    7. 9.7 Glossary
  10. 10Mechanical, Packaging, and Orderable Information
    1. 10.1 Packaging Information

Package Options

Refer to the PDF data sheet for device specific package drawings

Mechanical Data (Package|Pins)
  • ABL|161
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Table 5-16 I2C Timing Requirements(1)

STANDARD MODE FAST MODE UNIT
MIN MAX MIN MAX
tc(SCL) Cycle time, SCL 10 2.5 μs
tsu(SCLH-SDAL) Setup time, SCL high before SDA low
(for a repeated START condition)
4.7 0.6 μs
th(SCLL-SDAL) Hold time, SCL low after SDA low
(for a START and a repeated START condition)
4 0.6 μs
tw(SCLL) Pulse duration, SCL low 4.7 1.3 μs
tw(SCLH) Pulse duration, SCL high 4 0.6 μs
tsu(SDA-SCLH) Setup time, SDA valid before SCL high 250 100 μs
th(SCLL-SDA) Hold time, SDA valid after SCL low 0 3.45(1) 0 0.9 μs
tw(SDAH) Pulse duration, SDA high between STOP and START conditions 4.7 1.3 μs
tsu(SCLH-SDAH) Setup time, SCL high before SDA high
(for STOP condition)
4 0.6 μs
tw(SP) Pulse duration, spike (must be suppressed) 0 50 ns
Cb(2)(3) Capacitive load for each bus line 400 400 pF
The I2C pins SDA and SCL do not feature fail-safe I/O buffers. These pins could potentially draw current when the device is powered down.
The maximum th(SDA-SCLL) for I2C bus devices has only to be met if the device does not stretch the low period (tw(SCLL)) of the SCL signal.
Cb = total capacitance of one bus line in pF. If mixed with fast-mode devices, faster fall-times are allowed.
AWR1843 i2c_timing_pns160.gifFigure 5-12 I2C Timing Diagram

NOTE

  • A device must internally provide a hold time of at least 300 ns for the SDA signal (referred to the VIHmin of the SCL signal) to bridge the undefined region of the falling edge of SCL.
  • The maximum th(SDA-SCLL) has only to be met if the device does not stretch the LOW period (tw(SCLL)) of the SCL signal. E.A Fast-mode I2C-bus device can be used in a Standard-mode I2C-bus system, but the requirement tsu(SDA-SCLH) ≥ 250 ns must then be met. This will automatically be the case if the device does not stretch the LOW period of the SCL signal. If such a device does stretch the LOW period of the SCL signal, it must output the next data bit to the SDA line tr max + tsu(SDA-SCLH).