SLUSDU0 September   2019 BQ21061

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
    1.     Device Images
      1.      Simplified Schematic
  4. Revision History
  5. Pin Configuration and Functions
    1.     Pin Functions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Timing Requirements
    7. 6.7 Typical Characteristics
  7. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1  Linear Charger and Power Path
        1. 7.3.1.1 Battery Charging Process
        2. 7.3.1.2 JEITA and Battery Temperature Dependent Charging
        3. 7.3.1.3 Input Voltage Based Dynamic Power Management (VINDPM) and Dynamic Power Path Management (DPPM)
        4. 7.3.1.4 Battery Supplement Mode
      2. 7.3.2  Protection Mechanisms
        1. 7.3.2.1 Input Over-Voltage Protection
        2. 7.3.2.2 Safety Timer and I2C Watchdog Timer
        3. 7.3.2.3 Thermal Protection and Thermal Charge Current Foldback
        4. 7.3.2.4 Battery Short and Over Current Protection
        5. 7.3.2.5 PMID Short Circuit
      3. 7.3.3  VDD LDO
      4. 7.3.4  Load Switch/LDO Output and Control
      5. 7.3.5  PMID Power Control
      6. 7.3.6  System Voltage (PMID) Regulation
      7. 7.3.7  MR Wake and Reset Input
        1. 7.3.7.1 MR Wake or Short Button Press Functions
        2. 7.3.7.2 MR Reset or Long Button Press Functions
      8. 7.3.8  14-Second Watchdog for HW Reset
      9. 7.3.9  Faults Conditions and Interrupts (INT)
        1. 7.3.9.1 Flags and Fault Condition Response
      10. 7.3.10 Power Good (PG) Pin
      11. 7.3.11 External NTC Monitoring (TS)
        1. 7.3.11.1 TS Thresholds
      12. 7.3.12 I2C Interface
        1. 7.3.12.1 F/S Mode Protocol
    4. 7.4 Device Functional Modes
      1. 7.4.1 Ship Mode
      2. 7.4.2 Low Power
      3. 7.4.3 Active Battery
      4. 7.4.4 Charger/Adapter Mode
      5. 7.4.5 Power-Up/Down Sequencing
    5. 7.5 Register Map
      1. 7.5.1 I2C Registers
        1. 7.5.1.1  STAT0 Register (Address = 0x0) [reset = X]
          1. Table 8. STAT0 Register Field Descriptions
        2. 7.5.1.2  STAT1 Register (Address = 0x1) [reset = X]
          1. Table 9. STAT1 Register Field Descriptions
        3. 7.5.1.3  STAT2 Register (Address = 0x2) [reset = X]
          1. Table 10. STAT2 Register Field Descriptions
        4. 7.5.1.4  FLAG0 Register (Address = 0x3) [reset = 0x0]
          1. Table 11. FLAG0 Register Field Descriptions
        5. 7.5.1.5  FLAG1 Register (Address = 0x4) [reset = 0x0]
          1. Table 12. FLAG1 Register Field Descriptions
        6. 7.5.1.6  FLAG2 Register (Address = 0x5) [reset = 0x0]
          1. Table 13. FLAG2 Register Field Descriptions
        7. 7.5.1.7  FLAG3 Register (Address = 0x6) [reset = 0x0]
          1. Table 14. FLAG3 Register Field Descriptions
        8. 7.5.1.8  MASK0 Register (Address = 0x7) [reset = 0x0]
          1. Table 15. MASK0 Register Field Descriptions
        9. 7.5.1.9  MASK1 Register (Address = 0x8) [reset = 0x0]
          1. Table 16. MASK1 Register Field Descriptions
        10. 7.5.1.10 MASK2 Register (Address = 0x9) [reset = 0x71]
          1. Table 17. MASK2 Register Field Descriptions
        11. 7.5.1.11 MASK3 Register (Address = 0xA) [reset = 0x0]
          1. Table 18. MASK3 Register Field Descriptions
        12. 7.5.1.12 VBAT_CTRL Register (Address = 0x12) [reset = 0x3C]
          1. Table 19. VBAT_CTRL Register Field Descriptions
        13. 7.5.1.13 ICHG_CTRL Register (Address = 0x13) [reset = 0x8]
          1. Table 20. ICHG_CTRL Register Field Descriptions
        14. 7.5.1.14 PCHRGCTRL Register (Address = 0x14) [reset = 0x2]
          1. Table 21. PCHRGCTRL Register Field Descriptions
        15. 7.5.1.15 TERMCTRL Register (Address = 0x15) [reset = 0x14]
          1. Table 22. TERMCTRL Register Field Descriptions
        16. 7.5.1.16 BUVLO Register (Address = 0x16) [reset = 0x0]
          1. Table 23. BUVLO Register Field Descriptions
        17. 7.5.1.17 CHARGERCTRL0 Register (Address = 0x17) [reset = 0x82]
          1. Table 24. CHARGERCTRL0 Register Field Descriptions
        18. 7.5.1.18 CHARGERCTRL1 Register (Address = 0x18) [reset = 0xC2]
          1. Table 25. CHARGERCTRL1 Register Field Descriptions
        19. 7.5.1.19 ILIMCTRL Register (Address = 0x19) [reset = 0x6]
          1. Table 26. ILIMCTRL Register Field Descriptions
        20. 7.5.1.20 LDOCTRL Register (Address = 0x1D) [reset = 0xB0]
          1. Table 27. LDOCTRL Register Field Descriptions
        21. 7.5.1.21 MRCTRL Register (Address = 0x30) [reset = 0x2A]
          1. Table 28. MRCTRL Register Field Descriptions
        22. 7.5.1.22 ICCTRL0 Register (Address = 0x35) [reset = 0x10]
          1. Table 29. ICCTRL0 Register Field Descriptions
        23. 7.5.1.23 ICCTRL1 Register (Address = 0x36) [reset = 0x0]
          1. Table 30. ICCTRL1 Register Field Descriptions
        24. 7.5.1.24 ICCTRL2 Register (Address = 0x37) [reset = 0x40]
          1. Table 31. ICCTRL2 Register Field Descriptions
        25. 7.5.1.25 TS_FASTCHGCTRL Register (Address = 0x61) [reset = 0x34]
          1. Table 32. TS_FASTCHGCTRL Register Field Descriptions
        26. 7.5.1.26 TS_COLD Register (Address = 0x62) [reset = 0x7C]
          1. Table 33. TS_COLD Register Field Descriptions
        27. 7.5.1.27 TS_COOL Register (Address = 0x63) [reset = 0x6D]
          1. Table 34. TS_COOL Register Field Descriptions
        28. 7.5.1.28 TS_WARM Register (Address = 0x64) [reset = 0x38]
          1. Table 35. TS_WARM Register Field Descriptions
        29. 7.5.1.29 TS_HOT Register (Address = 0x65) [reset = 0x27]
          1. Table 36. TS_HOT Register Field Descriptions
        30. 7.5.1.30 DEVICE_ID Register (Address = 0x6F) [reset = 0x3A]
          1. Table 37. DEVICE_ID Register Field Descriptions
  8. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Application
      1. 8.2.1 Design Requirements
      2. 8.2.2 Detailed Design Procedure
        1. 8.2.2.1 Input (IN/PMID) Capacitors
        2. 8.2.2.2 VDD, LDO Input and Output Capacitors
        3. 8.2.2.3 TS
        4. 8.2.2.4 Recommended Passive Components
      3. 8.2.3 Application Curves
  9. Power Supply Recommendations
  10. 10Layout
    1. 10.1 Layout Guidelines
    2. 10.2 Layout Example
  11. 11Device and Documentation Support
    1. 11.1 Device Support
      1. 11.1.1 Third-Party Products Disclaimer
    2. 11.2 Documentation Support
      1. 11.2.1 Related Documentation
    3. 11.3 Receiving Notification of Documentation Updates
    4. 11.4 Support Resources
    5. 11.5 Trademarks
    6. 11.6 Electrostatic Discharge Caution
    7. 11.7 Glossary
  12. 12Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Input Voltage Based Dynamic Power Management (VINDPM) and Dynamic Power Path Management (DPPM)

The VINDPM loop prevents the input voltage from collapsing to a point where charging would be interrupted by reducing the current drawn by charger in order to keep VIN from dropping below VIN_DPM. Once the IN voltage drops to VIN_DPM, the VINDPM loops will reduce the input current through the blocking FETs, to prevent the further drop of the supply voltage. The VINDPM function is disabled by default and may be enabled through I2C command. The VIN_DPM threshold is programmable through the I2C register from 4.2 V to 4.9 V in 100-mV steps.

On the other hand, the DPPM loop prevents the system output (PMID) from dropping below VBAT + 200mV when the sum of the charge current and system load exceeds the BQ21061 input current limit setting. If PMID drops below the DPPM voltage threshold, the charging current is reduced. If PMID continues to drop after BATFET charging current is reduced to zero, the part will enter supplement mode when PMID falls below the supplement mode threshold (VBAT - VBSUP1). NOte that DPPM function is disabled when PMID regulation is set to battery tracking.

When the device enters these modes, the charge current may be lower than the set value and the corresponding status bits and flags are set. If the 2X timer is set, the safety timer is extended while the loops are active. Additionally, termination is disabled.