SLUSD88A March   2019  – June 2019 BQ25886

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
    1.     Simplified Schematic
  4. Revision History
  5. Device Comparison Table
  6. Pin Configuration and Functions
    1.     Pin Functions
  7. Specifications
    1. 7.1 Absolute Maximum Ratings
    2. 7.2 ESD Ratings
    3. 7.3 Recommended Operating Conditions
    4. 7.4 Thermal Information
    5. 7.5 Electrical Characteristics
    6. 7.6 Timing Requirements
    7. 7.7 Typical Characteristics
  8. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1  Device Power-On-Reset
      2. 8.3.2  Device Power Up from Battery without Input Source
      3. 8.3.3  Device Power Up from Input Source
        1. 8.3.3.1 Poor Source Qualification
        2. 8.3.3.2 Input Source Type Detection
          1. 8.3.3.2.1 D+/D– Detection Sets Input Current Limit
        3. 8.3.3.3 Power Up REGN Regulator (LDO)
        4. 8.3.3.4 Converter Power Up
      4. 8.3.4  Input Current Optimizer (ICO)
      5. 8.3.5  Buck Mode Operation from Battery (OTG)
      6. 8.3.6  PowerPath Management
        1. 8.3.6.1 Narrow VDC Architecture
        2. 8.3.6.2 Dynamic Power Management
        3. 8.3.6.3 Supplement Mode
      7. 8.3.7  Battery Charging Management
        1. 8.3.7.1 Autonomous Charging Cycle
        2. 8.3.7.2 Battery Charging Profile
        3. 8.3.7.3 Charging Termination
        4. 8.3.7.4 Thermistor Qualification
          1. 8.3.7.4.1 JEITA Guideline Compliance in Charge Mode
        5. 8.3.7.5 Charging Safety Timer
      8. 8.3.8  Status Outputs
        1. 8.3.8.1 Power Good Indicator (PG)
        2. 8.3.8.2 Charging Status Indicator (STAT)
      9. 8.3.9  Input Current Limit on ILIM Pin
      10. 8.3.10 Voltage and Current Monitoring
        1. 8.3.10.1 Voltage and Current Monitoring in Boost Mode
          1. 8.3.10.1.1 Input Over-Voltage Protection
          2. 8.3.10.1.2 Input Under-Voltage Protection
          3. 8.3.10.1.3 System Over-Voltage Protection
          4. 8.3.10.1.4 System Over-Current Protection
        2. 8.3.10.2 Voltage and Current Monitoring in OTG Buck Mode
          1. 8.3.10.2.1 VBUS Over-voltage Protection
          2. 8.3.10.2.2 VBUS Over-Current Protection
      11. 8.3.11 Thermal Regulation and Thermal Shutdown
        1. 8.3.11.1 Thermal Protection in Boost Mode
        2. 8.3.11.2 Thermal Protection in OTG Buck Mode
      12. 8.3.12 Battery Protection
        1. 8.3.12.1 Battery Over-Voltage Protection (BATOVP)
    4. 8.4 Device Functional Modes
  9. Application and Implementation
    1. 9.1 Application Information
    2. 9.2 Typical Application
      1. 9.2.1 Design Requirements
      2. 9.2.2 Detailed Design Procedure
        1. 9.2.2.1 Inductor Selection
        2. 9.2.2.2 Input (VBUS / PMID) Capacitor
        3. 9.2.2.3 Output (VSYS) Capacitor
        4. 9.2.2.4 ILIM resistor
        5. 9.2.2.5 ICHGSET resistor
      3. 9.2.3 Application Curves
  10. 10Power Supply Recommendations
  11. 11Layout
    1. 11.1 Layout Guidelines
    2. 11.2 Layout Example
  12. 12Device and Documentation Support
    1. 12.1 Device Support
      1. 12.1.1 Third-Party Products Disclaimer
    2. 12.2 Documentation Support
      1. 12.2.1 Related Documentation
    3. 12.3 Receiving Notification of Documentation Updates
    4. 12.4 Community Resources
    5. 12.5 Trademarks
    6. 12.6 Electrostatic Discharge Caution
    7. 12.7 Glossary
  13. 13Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Input (VBUS / PMID) Capacitor

The input capacitor should have enough ripple current rating to absorb input switching ripple current. The worst case RMS ripple current occurs when duty cycle is 0.5. If the converter does not operate at 50% duty cycle, then the worst case capacitor RMS current IPMID occurs where the duty cycle is closest to 50% and can be estimated by

Equation 7. BQ25886 IPMID_eqn7.gif

A low ESR ceramic capacitor such as X7R or X5R is preferred for input decoupling capacitor and should be placed close to the PMID and GND pins of the IC. Voltage rating of the capacitor must be higher than normal input voltage level. 25-V rating or higher capacitor is preferred for up to 5-V input voltage. A minimum 10-μF capacitor is suggested for up to 3.3-A input current. Keep in mind, long impedance cable would cause significant voltage drop with higher inrush current. For optimal performance, 44-uF cap on PMID is recommended. In addition, a minimum 1-μF capacitor is suggested at VBUS pin.