SLUSAT1B March   2013  – March 2020 BQ27510-G3

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
    1.     Device Images
      1.      Simplified Schematic
  4. Revision History
  5. Pin Configuration and Functions
    1.     Pin Functions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Data Flash Memory Characteristics
    7. 6.7 400-kHz I2C-Compatible Interface Communication Timing Requirements
    8. 6.8 100-kHz I2C-Compatible Interface Communication Timing Requirements
    9. 6.9 Typical Characteristics
  7. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
    4. 7.4 Device Functional Modes
      1. 7.4.1 Power Modes
    5. 7.5 Programming
      1. 7.5.1 Standard Data Commands
        1. 7.5.1.1 Control(): 0x00/0x01
      2. 7.5.2 Communications
        1. 7.5.2.1 I2C Interface
        2. 7.5.2.2 I2C Time Out
        3. 7.5.2.3 I2C Command Waiting Time
        4. 7.5.2.4 I2C Clock Stretching
  8. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Application
      1. 8.2.1 Design Requirements
      2. 8.2.2 Detailed Design Procedure
        1. 8.2.2.1 BAT Voltage Sense Input
        2. 8.2.2.2 SRP and SRN Current Sense Inputs
        3. 8.2.2.3 Sense Resistor Selection
        4. 8.2.2.4 TS Temperature Sense Input
        5. 8.2.2.5 Thermistor Selection
        6. 8.2.2.6 REGIN Power Supply Input Filtering
        7. 8.2.2.7 VCC LDO Output Filtering
      3. 8.2.3 Application Curves
  9. Power Supply Recommendations
    1. 9.1 Power Supply Decoupling
  10. 10Layout
    1. 10.1 Layout Guidelines
      1. 10.1.1 Sense Resistor Connections
      2. 10.1.2 Thermistor Connections
      3. 10.1.3 High-Current and Low-Current Path Separation
    2. 10.2 Layout Example
  11. 11Device and Documentation Support
    1. 11.1 Documentation Support
      1. 11.1.1 Related Documentation
    2. 11.2 Receiving Notification of Documentation Updates
    3. 11.3 Support Resources
    4. 11.4 Trademarks
    5. 11.5 Electrostatic Discharge Caution
    6. 11.6 Glossary
  12. 12Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Power Modes

The fuel gauge has different power modes: BAT INSERT CHECK, NORMAL, SNOOZE, SLEEP, and HIBERNATE. In NORMAL mode, the fuel gauge is fully powered and can execute any allowable task. In SNOOZE mode, both low-frequency and high-frequency oscillators are active. Although the SNOOZE mode has higher current consumption than the SLEEP mode, it is also a reduced-power mode. In SLEEP mode, the fuel gauge turns off the high-frequency oscillator and exists in a reduced-power state, periodically taking measurements and performing calculations. In HIBERNATE mode, the fuel gauge is in a low-power state, but can be woken up by communication or certain IO activity. Finally, the BAT INSERT CHECK mode is a powered up, but low-power halted, state, where the fuel gauge resides when no battery is inserted into the system.

Figure 5 and Figure 6 show the relationship between these modes.

BQ27510-G3 system_shutdown_sluua97.gifFigure 5. Power Mode Diagram for System Shutdown
BQ27510-G3 system_sleep_sluua97.gifFigure 6. Power Mode Diagram for System Sleep