SWRS227B March   2020  – May 2021 CC3130

PRODUCTION DATA  

  1. Features
  2. Applications
  3. Description
  4. Functional Block Diagram
  5. Revision History
  6. Device Comparison
    1. 6.1 Related Products
  7. Terminal Configuration and Functions
    1. 7.1 Pin Diagram
    2. 7.2 Pin Attributes
    3. 7.3 Signal Descriptions
      1.      12
    4. 7.4 Connections for Unused Pins
  8. Specifications
    1. 8.1  Absolute Maximum Ratings
    2. 8.2  ESD Ratings
    3. 8.3  Power-On Hours (POH)
    4. 8.4  Recommended Operating Conditions
    5. 8.5  Current Consumption Summary
    6. 8.6  TX Power Control
    7. 8.7  Brownout and Blackout Conditions
      1. 8.7.1 Brownout and Blackout Voltage Levels
    8. 8.8  Electrical Characteristics for DIO Pins
      1. 8.8.1 Electrical Characteristics: DIO Pins Except 52 and 53
      2. 8.8.2 Electrical Characteristics: DIO Pins 52 and 53
    9. 8.9  Electrical Characteristics for Pin Internal Pullup and Pulldown
    10. 8.10 WLAN Receiver Characteristics
      1.      28
    11. 8.11 WLAN Transmitter Characteristics
      1.      30
    12. 8.12 WLAN Transmitter Out-of-Band Emissions
      1. 8.12.1 WLAN 2.4 GHz Filter Requirements
    13. 8.13 BLE/2.4 GHz Radio Coexistence and WLAN Coexistence Requirements
    14. 8.14 Thermal Resistance Characteristics for RGK Package
    15. 8.15 Timing and Switching Characteristics
      1. 8.15.1 Power Supply Sequencing
      2. 8.15.2 Device Reset
      3. 8.15.3 Reset Timing
        1. 8.15.3.1 nRESET (32-kHz Crystal)
        2. 8.15.3.2 First-Time Power-Up and Reset Removal Timing Requirements (32-kHz Crystal)
        3. 8.15.3.3 nRESET (External 32-kHz Crystal)
          1. 8.15.3.3.1 First-Time Power-Up and Reset Removal Timing Requirements (External 32-kHz Crystal)
      4. 8.15.4 Wakeup From HIBERNATE Mode
        1. 8.15.4.1 nHIB Timing Requirements
      5. 8.15.5 Clock Specifications
        1. 8.15.5.1 Slow Clock Using Internal Oscillator
          1. 8.15.5.1.1 RTC Crystal Requirements
        2. 8.15.5.2 Slow Clock Using an External Clock
          1. 8.15.5.2.1 External RTC Digital Clock Requirements
        3. 8.15.5.3 Fast Clock (Fref) Using an External Crystal
          1. 8.15.5.3.1 WLAN Fast-Clock Crystal Requirements
        4. 8.15.5.4 Fast Clock (Fref) Using an External Oscillator
          1. 8.15.5.4.1 External Fref Clock Requirements (–40°C to +85°C)
      6. 8.15.6 Interfaces
        1. 8.15.6.1 Host SPI Interface Timing
          1. 8.15.6.1.1 Host SPI Interface Timing Parameters
        2. 8.15.6.2 Flash SPI Interface Timing
          1. 8.15.6.2.1 Flash SPI Interface Timing Parameters
        3. 8.15.6.3 DIO Interface Timing
          1. 8.15.6.3.1 DIO Output Transition Time Parameters (Vsupply = 3.3 V)
            1. 8.15.6.3.1.1 DIO Output Transition Times (Vsupply = 3.3 V) (1)
          2. 8.15.6.3.2 DIO Input Transition Time Parameters
            1. 8.15.6.3.2.1 DIO Input Transition Time Parameters
    16. 8.16 External Interfaces
      1. 8.16.1 SPI Flash Interface
      2. 8.16.2 SPI Host Interface
      3. 8.16.3 Host UART Interface
        1. 8.16.3.1 5-Wire UART Topology
        2. 8.16.3.2 4-Wire UART Topology
        3. 8.16.3.3 3-Wire UART Topology
  9. Detailed Description
    1. 9.1 Overview
    2. 9.2 Device Features
      1. 9.2.1 WLAN
      2. 9.2.2 Network Stack
      3. 9.2.3 Security
      4. 9.2.4 Host Interface and Driver
      5. 9.2.5 System
    3. 9.3 Power-Management Subsystem
      1. 9.3.1 VBAT Wide-Voltage Connection
    4. 9.4 Low-Power Operating Modes
      1. 9.4.1 Low-Power Deep Sleep
      2. 9.4.2 Hibernate
      3. 9.4.3 Shutdown
    5. 9.5 Memory
      1. 9.5.1 External Memory Requirements
    6. 9.6 Restoring Factory Default Configuration
    7. 9.7 Hostless Mode
  10. 10Applications, Implementation, and Layout
    1. 10.1 Application Information
      1. 10.1.1 BLE/2.4 GHz Radio Coexistence
      2. 10.1.2 Antenna Selection
      3. 10.1.3 Typical Application
    2. 10.2 PCB Layout Guidelines
      1. 10.2.1 General PCB Guidelines
      2. 10.2.2 Power Layout and Routing
        1. 10.2.2.1 Design Considerations
      3. 10.2.3 Clock Interface Guidelines
      4. 10.2.4 Digital Input and Output Guidelines
      5. 10.2.5 RF Interface Guidelines
  11. 11Device and Documentation Support
    1. 11.1 Tools and Software
    2. 11.2 Firmware Updates
    3. 11.3 Device Nomenclature
    4. 11.4 Documentation Support
    5. 11.5 Trademarks
    6. 11.6 Electrostatic Discharge Caution
    7. 11.7 Glossary
  12. 12Mechanical, Packaging, and Orderable Information
    1. 12.1 Package Option Addendum
      1. 12.1.1 Packaging Information
      2. 12.1.2 Tape and Reel Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

External Memory Requirements

The CC3130 device maintains a proprietary file system on the sFLASH. The CC3130 file system stores the service pack file, system files, configuration files, certificate files, web page files, and user files. By using a format command through the API, users can provide the total size allocated for the file system. The starting address of the file system cannot be set and is always at the beginning of the sFLASH. The applications microcontroller must access the sFLASH memory area allocated to the file system directly through the CC3130 file system. The applications microcontroller must not access the sFLASH memory area directly.

The file system manages the allocation of sFLASH blocks for stored files according to download order, which means that the location of a specific file is not fixed in all systems. Files are stored on sFLASH using human-readable filenames rather than file IDs. The file system API works using plain text, and file encryption and decryption is invisible to the user. Encrypted files can be accessed only through the file system.

All file types can have a maximum of 100 supported files in the file system. All files are stored in 4-KB blocks and thus use a minimum of 4KB of Flash space. Fail-safe files require twice the original size and use a minimum of 8KB. Encrypted files are counted as fail-safe in terms of space. The maximum file size is 1MB.

Table 9-2 lists the minimum required memory consumption under the following assumptions:

  • System files in use consume 64 blocks (256KB).
  • Vendor files are not taken into account.
  • Gang image:
    • Storage for the gang image is rounded up to 32 blocks (meaning 128-KB resolution).
    • Gang image size depends on the actual content size of all components. Additionally, the image should be 128-KB aligned so unaligned memory is considered lost. Service pack, system files, and the 128-KB aligned memory are assumed to occupy 256KB.
  • All calculations consider that the restore-to-default is enabled.

Table 9-2 Recommended Flash Size
ITEMCC3130 [KB]
File system allocation table20
System and configuration files256
Service Pack264
Gang image size256
Total796
Minimal Flash size8MBit
Recommended Flash size16MBit