SWRS243B February   2020  – May 2021 CC3235MODAS , CC3235MODASF , CC3235MODS , CC3235MODSF

PRODUCTION DATA  

  1. Features
  2. Applications
  3. Description
  4. Functional Block Diagrams
  5. Revision History
  6. Device Comparison
    1. 6.1 Related Products
  7. Terminal Configuration and Functions
    1. 7.1 CC3235MODx and CC3235MODAx Pin Diagram
    2. 7.2 Pin Attributes and Pin Multiplexing
      1. 7.2.1 Module Pin Descriptions
    3. 7.3 Signal Descriptions
    4. 7.4 Drive Strength and Reset States for Analog-Digital Multiplexed Pins
    5. 7.5 Pad State After Application of Power to Chip, but Before Reset Release
    6. 7.6 Connections for Unused Pins
  8. Specifications
    1. 8.1  Absolute Maximum Ratings
    2. 8.2  ESD Ratings
    3. 8.3  Recommended Operating Conditions
    4. 8.4  Current Consumption (CC3235MODS and CC3235MODAS)
      1.     
      2.     
    5. 8.5  Current Consumption (CC3235MODSF and CC3235MODASF)
      1.     
      2.     
    6. 8.6  TX Power Control for 2.4 GHz Band
    7. 8.7  TX Power Control for 5 GHz
    8. 8.8  Brownout and Blackout Conditions
    9. 8.9  Electrical Characteristics for GPIO Pins
      1. 8.9.1 Electrical Characteristics for Pin Internal Pullup and Pulldown (25°C)
    10. 8.10 CC3235MODAx Antenna Characteristics
    11. 8.11 WLAN Receiver Characteristics
      1.     
      2.     
    12. 8.12 WLAN Transmitter Characteristics
      1.     
      2.     
    13. 8.13 BLE and WLAN Coexistence Requirements
    14. 8.14 Reset Requirement
    15. 8.15 Thermal Resistance Characteristics for MOB and MON Packages
    16. 8.16 Timing and Switching Characteristics
      1. 8.16.1 Power-Up Sequencing
      2. 8.16.2 Power-Down Sequencing
      3. 8.16.3 Device Reset
      4. 8.16.4 Wake Up From Hibernate Timing
      5. 8.16.5 Peripherals Timing
        1. 8.16.5.1  SPI
          1. 8.16.5.1.1 SPI Master
          2. 8.16.5.1.2 SPI Slave
        2. 8.16.5.2  I2S
          1. 8.16.5.2.1 I2S Transmit Mode
          2. 8.16.5.2.2 I2S Receive Mode
        3. 8.16.5.3  GPIOs
          1. 8.16.5.3.1 GPIO Input Transition Time Parameters
        4. 8.16.5.4  I2C
        5. 8.16.5.5  IEEE 1149.1 JTAG
        6. 8.16.5.6  ADC
        7. 8.16.5.7  Camera Parallel Port
        8. 8.16.5.8  UART
        9. 8.16.5.9  External Flash Interface
        10. 8.16.5.10 SD Host
        11. 8.16.5.11 Timers
  9. Detailed Description
    1. 9.1  Overview
    2. 9.2  Functional Block Diagram
    3. 9.3  Arm Cortex-M4 Processor Core Subsystem
    4. 9.4  Wi-Fi Network Processor Subsystem
      1. 9.4.1 WLAN
      2. 9.4.2 Network Stack
    5. 9.5  Security
    6. 9.6  FIPS 140-2 Level 1 Certification
    7. 9.7  Power-Management Subsystem
      1. 9.7.1 VBAT Wide-Voltage Connection
    8. 9.8  Low-Power Operating Mode
    9. 9.9  Memory
      1. 9.9.1 Internal Memory
        1. 9.9.1.1 SRAM
        2. 9.9.1.2 ROM
        3. 9.9.1.3 Flash Memory
        4. 9.9.1.4 Memory Map
    10. 9.10 Restoring Factory Default Configuration
    11. 9.11 Boot Modes
      1. 9.11.1 Boot Mode List
    12. 9.12 Hostless Mode
    13. 9.13 Device Certification and Qualification
      1. 9.13.1 FCC Certification and Statement
      2. 9.13.2 IC/ISED Certification and Statement
      3. 9.13.3 ETSI/CE Certification
      4. 9.13.4 MIC Certification
    14. 9.14 Module Markings
    15. 9.15 End Product Labeling
    16. 9.16 Manual Information to the End User
  10. 10Applications, Implementation, and Layout
    1. 10.1 Typical Application
      1. 10.1.1 BLE/2.4 GHz Radio Coexistence
      2. 10.1.2 Antenna Selection (CC3235MODx only)
      3. 10.1.3 Typical Application Schematic (CC3235MODx)
      4. 10.1.4 Typical Application Schematic (CC3235MODAx)
    2. 10.2 Device Connection and Layout Fundamentals
      1. 10.2.1 Power Supply Decoupling and Bulk Capacitors
      2. 10.2.2 Reset
      3. 10.2.3 Unused Pins
    3. 10.3 PCB Layout Guidelines
      1. 10.3.1 General Layout Recommendations
      2. 10.3.2 CC3235MODx RF Layout Recommendations
        1. 10.3.2.1 Antenna Placement and Routing
        2. 10.3.2.2 Transmission Line Considerations
      3. 10.3.3 CC3235MODAx RF Layout Recommendations
  11. 11Environmental Requirements and SMT Specifications
    1. 11.1 PCB Bending
    2. 11.2 Handling Environment
      1. 11.2.1 Terminals
      2. 11.2.2 Falling
    3. 11.3 Storage Condition
      1. 11.3.1 Moisture Barrier Bag Before Opened
      2. 11.3.2 Moisture Barrier Bag Open
    4. 11.4 PCB Assembly Guide
      1. 11.4.1 PCB Land Pattern & Thermal Vias
      2. 11.4.2 SMT Assembly Recommendations
      3. 11.4.3 PCB Surface Finish Requirements
      4. 11.4.4 Solder Stencil
      5. 11.4.5 Package Placement
      6. 11.4.6 Solder Joint Inspection
      7. 11.4.7 Rework and Replacement
      8. 11.4.8 Solder Joint Voiding
    5. 11.5 Baking Conditions
    6. 11.6 Soldering and Reflow Condition
  12. 12Device and Documentation Support
    1. 12.1 Development Tools and Software
    2. 12.2 Firmware Updates
    3. 12.3 Device Nomenclature
    4. 12.4 Documentation Support
    5. 12.5 Related Links
    6. 12.6 Support Resources
    7. 12.7 Trademarks
    8. 12.8 Electrostatic Discharge Caution
    9. 12.9 Glossary
  13. 13Mechanical, Packaging, and Orderable Information
    1. 13.1 Mechanical, Land, and Solder Paste Drawings
    2. 13.2 Package Option Addendum
      1. 13.2.1 Packaging Information
      2. 13.2.2 Tape and Reel Information
      3. 13.2.3 CC3235MODx Tape Specifications
      4. 13.2.4 CC3235MODAx Tape Specifications

Package Options

Refer to the PDF data sheet for device specific package drawings

Mechanical Data (Package|Pins)
  • MON|63
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Packaging Information

Orderable Device Status (1) Package Type Package Drawing Pins Package Qty Eco Plan (2) Lead/Ball Finish MSL, Peak Temp (3) Op Temp (°C) Device Marking(4)(5)
CC3235MODSF12MOBR ACTIVE QFM MOB 63 750 Green (RoHS and no Sb/Br) ENIG 3, 260°C –40 to 85 CC3235MODSF12MOB
CC3235MODSM2MOBR ACTIVE QFM MOB 63 750 Green (RoHS and no Sb/Br) ENIG 3, 260°C –40 to 85 CC3235MODSM2MOB
CC3235MODASF12MONR PREVIEW QFM MON 63 700 Green (RoHS and no Sb/Br) ENIG 3, 260°C –40 to 85 CC3235MODASF12MON
CC3235MODASM2MONR PREVIEW QFM MON 63 700 Green (RoHS and no Sb/Br) ENIG 3, 260°C –40 to 85 CC3235MODASM2MON
The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
PRE_PROD Unannounced device, not in production, not available for mass market, nor on the web, samples not available.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)
MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device
Multiple Device markings will be inside parentheses. Only on Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.