SCAS931G May   2012  – January 2018 CDCM6208

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
    1.     Device Images
      1.      Simplified Schematic
      2.      Simplified Schematic
  4. Revision History
  5. Pin Configuration and Functions
    1.     Pin Functions
  6. Specifications
    1. 6.1  Absolute Maximum Ratings
    2. 6.2  ESD Ratings
    3. 6.3  Recommended Operating Conditions
    4. 6.4  Thermal Information, Airflow = 0 LFM
    5. 6.5  Thermal Information, Airflow = 150 LFM
    6. 6.6  Thermal Information, Airflow = 250 LFM
    7. 6.7  Thermal Information, Airflow = 500 LFM
    8. 6.8  Single-Ended Input Characteristics (SI_MODE[1:0], SDI/SDA/PIN1, SCL/PIN4, SDO/ADD0/PIN2, SCS/ADD1/PIN3, STATUS1/PIN0, RESETN/PWR, PDN, SYNCN, REF_SEL)
    9. 6.9  Single-Ended Input Characteristics (PRI_REF, SEC_REF)
    10. 6.10 Differential Input Characteristics (PRI_REF, SEC_REF)
    11. 6.11 Crystal Input Characteristics (SEC_REF)
    12. 6.12 Single-Ended Output Characteristics (STATUS1, STATUS0, SDO, SDA)
    13. 6.13 PLL Characteristics
    14. 6.14 LVCMOS Output Characteristics
    15. 6.15 LVPECL (High-Swing CML) Output Characteristics
    16. 6.16 CML Output Characteristics
    17. 6.17 LVDS (Low-Power CML) Output Characteristics
    18. 6.18 HCSL Output Characteristics
    19. 6.19 Output Skew and Sync to Output Propagation Delay Characteristics
    20. 6.20 Device Individual Block Current Consumption
    21. 6.21 Worst Case Current Consumption
    22. 6.22 Timing Requirements, I2C Timing
    23. 6.23 Typical Characteristics
  7. Parameter Measurement Information
  8. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1  Typical Device Jitter
      2. 8.3.2  Universal Input Buffer (PRI_REF, SEC_REF)
      3. 8.3.3  VCO Calibration
      4. 8.3.4  Reference Divider (R)
      5. 8.3.5  Input Divider (M)
      6. 8.3.6  Feedback Divider (N)
      7. 8.3.7  Prescaler Dividers (PS_A, PS_B)
      8. 8.3.8  Phase Frequency Detector (PFD)
      9. 8.3.9  Charge Pump (CP)
      10. 8.3.10 Fractional Output Divider Jitter Performance
      11. 8.3.11 Device Block-Level Description
      12. 8.3.12 Device Configuration Control
      13. 8.3.13 Configuring the RESETN Pin
      14. 8.3.14 Preventing False Output Frequencies in SPI/I2C Mode at Start-Up
      15. 8.3.15 Input MUX and Smart Input MUX
    4. 8.4 Device Functional Modes
      1. 8.4.1 Control Pins Definition
      2. 8.4.2 Loop Filter Recommendations for Pin Modes
      3. 8.4.3 Status Pins Definition
      4. 8.4.4 PLL Lock Detect
      5. 8.4.5 Interface and Control
        1. 8.4.5.1 Register File Reference Convention
        2. 8.4.5.2 SPI - Serial Peripheral Interface
          1. 8.4.5.2.1 Writing to the CDCM6208
          2. 8.4.5.2.2 Reading From the CDCM6208
          3. 8.4.5.2.3 Block Write/Read Operation
          4. 8.4.5.2.4 I2C Serial Interface
    5. 8.5 Programming
    6. 8.6 Register Maps
  9. Application and Implementation
    1. 9.1 Application Information
    2. 9.2 Typical Applications
      1. 9.2.1 Design Requirements
      2. 9.2.2 Detailed Design Procedures
        1. 9.2.2.1  Jitter Considerations in SERDES Systems
        2. 9.2.2.2  Jitter Considerations in ADC and DAC Systems
        3. 9.2.2.3  Configuring the PLL
        4. 9.2.2.4  Programmable Loop Filter
        5. 9.2.2.5  Loop filter Component Selection
        6. 9.2.2.6  Device Output Signaling
        7. 9.2.2.7  Integer Output Divider (IO)
        8. 9.2.2.8  Fractional Output Divider (FOD)
        9. 9.2.2.9  Output Synchronization
        10. 9.2.2.10 Output Mux on Y4 and Y5
        11. 9.2.2.11 Staggered CLK Output Power Up for Power Sequencing of a DSP
  10. 10Power Supply Recommendations
    1. 10.1 Power Rail Sequencing, Power Supply Ramp Rate, and Mixing Supply Domains
      1. 10.1.1 Mixing Supplies
      2. 10.1.2 Power-On Reset
      3. 10.1.3 Slow Power-Up Supply Ramp
      4. 10.1.4 Fast Power-Up Supply Ramp
      5. 10.1.5 Delaying VDD_Yx_Yy to Protect DSP IOs
    2. 10.2 Device Power-Up Timing
    3. 10.3 Power Down
    4. 10.4 Power Supply Ripple Rejection (PSRR) versus Ripple Frequency
  11. 11Layout
    1. 11.1 Layout Guidelines
    2. 11.2 Reference Schematics
  12. 12Device and Documentation Support
    1. 12.1 Documentation Support
      1. 12.1.1 Related Documentation
    2. 12.2 Receiving Notification of Documentation Updates
    3. 12.3 Community Resources
    4. 12.4 Trademarks
    5. 12.5 Electrostatic Discharge Caution
    6. 12.6 Glossary
  13. 13Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Pin Configuration and Functions

RGZ Package
48-Pin VQFN
(Top View)
CDCM6208 CDCM6208_Pin_Assignments_SCAS931.gif

Pin Functions

PINI/OTYPEDESCRIPTION
NAMENO.
PRI_REFP 8 Input Universal Primary Reference Input +
PRI_REFN 9 Input Universal Primary Reference Input –
VDD_PRI_REF 7 PWR Analog Supply pin for reference inputs to set between 1.8 V, 2.5 V, or 3.3 V, or connected to VDD_SEC_REF.
SEC_REFP 11 Input Universal Secondary Reference Input +
SEC_REFN 12 Input Universal Secondary Reference Input –
VDD_SEC_REF 10 PWR Analog Supply pin for reference inputs to set between 1.8 V, 2.5 V, or 3.3 V, or connected to VDD_PRI_REF(2).
REF_SEL 6 Input LVCMOS
with 50-kΩ pullup
Manual Reference Selection MUX for PLL. In SPI or I2C mode the reference selection is also controlled through Register 4 bit 12.REF_SEL = 0 (≤ VIL): selects PRI_REFREF_SEL = 1 (≥ VIH): selects SEC_REF (when Reg 4.12 = 1). See Table 5 for detail.
ELF 41 Output Analog External loop filter pin for PLL
Y0_P 14 Output Universal Output 0 Positive Pin
Y0_N 15 Output Universal Output 0 Negative Pin
Y1_P 17 Output Universal Output 1 Positive Pin
Y1_N 16 Output Universal Output 1 Negative Pin
VDD_Y0_Y1
(2 pins)
13, 18 PWR Analog Supply pin for outputs 0, 1 to set between 1.8 V, 2.5 V, or 3.3 V
Y2_P 20 Output Universal Output 2 Positive Pin
Y2_N 21 Output Universal Output 2 Negative Pin
Y3_P 23 Output Universal Output 3 Positive Pin
Y3_N 22 Output Universal Output 3 Negative Pin
VDD_Y2_Y3
(2 pins)
19, 24 PWR Analog Supply pin for outputs 2, 3 to set between 1.8 V, 2.5 V, or 3.3 V
Y4_P 26 Output Universal Output 4 Positive Pin
Y4_N 25 Output Universal Output 4 Negative Pin
VDD_Y4 27 PWR Analog Supply pin for output 4 to set between 1.8 V, 2.5 V, or 3.3 V
Y5_P 29 Output Universal Output 5 Positive Pin
Y5_N 28 Output Universal Output 5 Negative Pin
VDD_Y5 30 PWR Analog Supply pin for output 5 to set between 1.8 V, 2.5 V, or 3.3 V
Y6_P 32 Output Universal Output 6 Positive Pin
Y6_N 33 Output Universal Output 6 Negative Pin
VDD_Y6 31 PWR Analog Supply pin for output 6 to set between 1.8 V, 2.5 V, or 3.3 V
Y7_P 35 Output Universal Output 7 Positive Pin
Y7_N 36 Output Universal Output 7 Negative Pin
VDD_Y7 34 PWR Analog Supply pin for output 7 to set between 1.8 V, 2.5 V, or 3.3 V
VDD_VCO 39 PWR Analog Analog power supply for PLL/VCO; This pin is sensitive to power supply noise; The supply of this pin and the VDD_PLL2 supply pin can be combined as they are both analog and sensitive supplies;
VDD_PLL1 37 PWR Analog Analog Power Supply Connections
VDD_PLL2 38 PWR Analog Analog Power Supply Connections; This pin is sensitive to power supply noise; The supply of VDD_PLL2 and VDD_VCO can be combined as these pins are both power-sensitive, analog supply pins
DVDD 48 PWR Analog Digital Power Supply Connections; This is also the reference supply voltage for all control inputs and must match the expected input signal swing of control inputs.
GND PAD PWR Analog Power Supply Ground and Thermal Pad
STATUS0 46 Output LVCMOS Status pin 0 (see Table 12 for details)
STATUS1/PIN0 45 Output and Input LVCMOS
no pull resistor
STATUS1: Status pin in SPI/I2C modes. For details, see Table 10 for pin modes and Table 12 for status mode. PIN0: Control pin 0 in pin mode.
SI_MODE1 47 Input LVCMOS
with 50-kΩ pullup
Serial Interface Mode or Pin mode selection. SI_MODE[1:0]=00: SPI mode; SI_MODE[1:0]=01: I2C mode; SI_MODE[1:0]=10: Pin Mode (No serial programming); SI_MODE[1:0]=11: RESERVED
SI_MODE0 1 LVCMOS
with 50-kΩ pulldown
SDI/SDA/PIN1 2 I/O LVCMOS in
Open drain out
LVCMOS in
no pull resistor
SDI: SPI Serial Data Input SDA: I2C Serial Data (Read/Write bidirectional), open-drain output; requires a pullup resistor in I2C mode; PIN1: Control pin 1 in pin mode
SDO/AD0/PIN2 3 Output/Input LVCMOS out
LVCMOS in
LVCMOS in
no pull resistor
SDO: SPI Serial Data AD0: I2C Address Offset Bit 0 input; PIN2: Control pin 2 in pin mode
SCS/AD1/PIN 3 4 Input LVCMOS no pull resistor SCS: SPI Latch EnableAD1: I2C Address Offset Bit 1 input; PIN3: Control pin 3 in pin mode
SCL/PIN4 5 Input LVCMOS no pull resistor SCL: SPI/I2C ClockPIN4: Control pin 4 in pin mode
RESETN/PWR 44 Input LVCMOS
with 50-kΩ pullup
In SPI/I2C programming mode, external RESETN signal (active low).
RESETN = V IL: device in reset (registers values are retained)
RESETN = V IH: device active. The device can be programmed through SPI while RESETN is held low (this is useful to avoid any false output frequencies at power up). (1)
In Pin mode this pin controls device core and I/O supply voltage setting. 0 = 1.8 V, 1 = 2.5/3.3 V for the device core and I/O power supply voltage. In pin mode, it is not possible to mix and match the supplies. All supplies should either be 1.8 V or 2.5/3.3 V.
REG_CAP 40 Output Analog Regulator Capacitor; connect a 10-µF cap with ESR below 1 Ω to GND at frequencies above 100 kHz
PDN 43 Input LVCMOS
with 50-kΩ pullup
Power Down Active low. When PDN = VIH is normal operation. When PDN = VIL, the device is disabled and current consumption minimized. Exiting power down resets the entire device and defaults all registers. It is recommended to connect a capacitor to GND to hold the device in power-down until the digital and PLL related power supplies are stable. See section on power down in the application section.
SYNCN 42 Input LVCMOS
with 50-kΩ pullup
Active low. Device outputs are synchronized on a low-to-high transition on the SYNCN pin. SYNCN held low disables all outputs.
Note: the device cannot be programmed in I2C while RESETN is held low.
If Secondary input buffer is disabled (Register 4 Bit 5 = 0), it is possible to connect VDD_SEC_REF to GND.