DLPS076B November   2017  – June 2019 DLP3030-Q1

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
    1.     Device Images
      1.      DLP DLP3030-Q1 Block System Diagram
  4. Revision History
  5. Pin Configuration and Functions
    1.     Pin Configurations and Functions
  6. Specifications
    1. 6.1  Absolute Maximum Ratings
    2. 6.2  Storage Conditions
    3. 6.3  ESD Ratings
    4. 6.4  Recommended Operating Conditions
    5. 6.5  Thermal Information
    6. 6.6  Electrical Characteristics
    7. 6.7  Timing Requirements
    8. 6.8  Switching Characteristics
    9. 6.9  System Mounting Interface Loads
    10. 6.10 Physical Characteristics of the Micromirror Array
    11. 6.11 Optical Characteristics of the Micromirror Array
    12. 6.12 Window Characteristics
    13. 6.13 Chipset Component Usage Specification
  7. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 Micromirror Array
      2. 7.3.2 Double Data Rate (DDR) Interface
      3. 7.3.3 Micromirror Switching Control
      4. 7.3.4 DMD Voltage Supplies
      5. 7.3.5 Logic Reset
      6. 7.3.6 Temperature Sensing Diode
        1. 7.3.6.1 Temperature Sense Diode Theory
      7. 7.3.7 Active Array Temperature
      8. 7.3.8 DMD JTAG Interface
    4. 7.4 Optical Performance
      1. 7.4.1 Numerical Aperture and Stray Light Control
      2. 7.4.2 Pupil Match
      3. 7.4.3 Illumination Overfill and Alignment
    5. 7.5 DMD Image Quality Specification
    6. 7.6 Definition of Micromirror Landed-On/Landed-Off Duty Cycle
  8. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Application
      1. 8.2.1 HUD Reference Design and LED Controller Reference Design
    3. 8.3 Application Mission Profile Consideration
  9. Power Supply Recommendations
    1. 9.1 Power Supply Sequencing Requirements
      1. 9.1.1 Power Up and Power Down
  10. 10Layout
    1. 10.1 Layout Guidelines
    2. 10.2 Temperature Diode Pins
    3. 10.3 Layout Example
  11. 11Device and Documentation Support
    1. 11.1 Device Support
      1. 11.1.1 Device Nomenclature
      2. 11.1.2 Device Markings
    2. 11.2 Documentation Support
      1. 11.2.1 Related Documentation
    3. 11.3 Receiving Notification of Documentation Updates
    4. 11.4 Community Resources
    5. 11.5 Trademarks
    6. 11.6 Electrostatic Discharge Caution
    7. 11.7 Device Handling
    8. 11.8 Glossary
  12. 12Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Micromirror Switching Control

Once data is loaded onto the DMD, the mirrors are caused to switch position (+12° or –12°) based on the timing signal sent to the DMD Mirror and SRAM control logic. The DMD mirrors will be switched from OFF to ON or ON to OFF, or stay in the same position based on control signals DAD_BUS, RESET_STROBE, SAC_BUS, and SAC_CLK, which are coordinated with the data loading by the DLPC120-Q1. In general, the DLPC120-Q1 loads the DMD SRAM memory cells over the DDR interface, and then commands to the micromirrors to switch position.

At power down, the DMD Mirrors are commanded by the DLPC120-Q1 to move to a near flat (0°) position as shown in Power Supply Recommendations section. The flat state position of the DMD mirrors are referred to as the “Parked” state. To maintain long term DMD reliability, the DMD must be properly “Parked” prior to every power down of the DMD power supplies. Refer to the DLPC120-Q1 Programmer's Guide for information about properly parking the DMD.