DLPS073F March   2016  – May 2019 DLP5530-Q1

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
    1.     Device Images
      1.      DLP5530-Q1 DLP Chipset System Block Diagram
  4. Revision History
  5. Pin Configuration and Functions
    1.     Pin Functions – Connector Pins
    2.     Pin Functions – Test Pads
  6. Specifications
    1. 6.1  Absolute Maximum Ratings
    2. 6.2  Storage Conditions
    3. 6.3  ESD Ratings
    4. 6.4  Recommended Operating Conditions
    5. 6.5  Thermal Information
    6. 6.6  Electrical Characteristics
    7. 6.7  Timing Requirements
    8. 6.8  Switching Characteristics
    9. 6.9  System Mounting Interface Loads
    10. 6.10 Physical Characteristics of the Micromirror Array
    11. 6.11 Micromirror Array Optical Characteristics
    12. 6.12 Window Characteristics
    13. 6.13 Chipset Component Usage Specification
  7. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 Sub-LVDS Data Interface
      2. 7.3.2 Low Speed Interface for Control
      3. 7.3.3 DMD Voltage Supplies
      4. 7.3.4 Asynchronous Reset
      5. 7.3.5 Temperature Sensing Diode
        1. 7.3.5.1 Temperature Sense Diode Theory
    4. 7.4 System Optical Considerations
      1. 7.4.1 Numerical Aperture and Stray Light Control
      2. 7.4.2 Pupil Match
      3. 7.4.3 Illumination Overfill
    5. 7.5 DMD Image Performance Specification
    6. 7.6 Micromirror Array Temperature Calculation
    7. 7.7 Micromirror Landed-On/Landed-Off Duty Cycle
      1. 7.7.1 Definition of Micromirror Landed-On/Landed-Off Duty Cycle
  8. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Application
      1. 8.2.1 Application Overview
      2. 8.2.2 Reference Design
      3. 8.2.3 Application Mission Profile Consideration
  9. Power Supply Recommendations
    1. 9.1 Power Supply Power-Up Procedure
    2. 9.2 Power Supply Power-Down Procedure
    3. 9.3 Power Supply Sequencing Requirements
  10. 10Layout
    1. 10.1 Layout Guidelines
  11. 11Device and Documentation Support
    1. 11.1 Device Support
      1. 11.1.1 Device Nomenclature
      2. 11.1.2 Device Markings
    2. 11.2 Related Links
    3. 11.3 Community Resources
    4. 11.4 Trademarks
    5. 11.5 Electrostatic Discharge Caution
    6. 11.6 DMD Handling
    7. 11.7 Glossary
  12. 12Mechanical, Packaging, and Orderable Information

Package Options

Refer to the PDF data sheet for device specific package drawings

Mechanical Data (Package|Pins)
  • FYK|149
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Window Characteristics

PARAMETER MIN NOM MAX UNIT
Window material designation Corning Eagle XG
Window refractive index at wavelength 546.1 nm 1.5119
DMD efficiency(1) 420 nm - 700 nm 66%
Window aperture(2) See (2)
DMD efficiency is measured photopically under the following conditions: 24° illumination angle, F/2.4 illumination and collection apertures, uniform source spectrum (halogen), uniform pupil illumination, the optical system is telecentric at the DMD, and the efficiency numbers are measured with 100% electronic micromirror landed duty-cycle and do not include system optical efficiency or overfill loss. This number is measured under conditions described above and deviations from these specified conditions could result in a different efficiency value in a different optical system. The factors that can influence the DMD efficiency related to system application include: light source spectral distribution and diffraction efficiency at those wavelengths (especially with discrete light sources such as LEDs or lasers), and illumination and collection apertures (F/#) and diffraction efficiency. The interaction of these system factors as well as the DMD efficiency factors that are not system dependent are described in detail in the DMD Optical Efficiency Application Note.
See the mechanical package ICD for details regarding the size and location of the window aperture.