DLPS210 March   2021 DLP651NE


  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Pin Configuration and Functions
  6. Specifications
    1. 6.1  Absolute Maximum Ratings
    2. 6.2  Storage Conditions
    3. 6.3  ESD Ratings
    4. 6.4  Recommended Operating Conditions
    6. 6.5  Thermal Information
    7. 6.6  Electrical Characteristics
    8. 6.7  Switching Characteristics
    10. 6.8  Timing Requirements
    12. 6.9  System Mounting Interface Loads
    14. 6.10 Micromirror Array Physical Characteristics
    16. 6.11 Micromirror Array Optical Characteristics
    18. 6.12 Window Characteristics
    19. 6.13 Chipset Component Usage Specification
  7. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 Power Interface
      2. 7.3.2 Timing
    4. 7.4 Device Functional Modes
    5. 7.5 Optical Interface and System Image Quality Considerations
      1. 7.5.1 Numerical Aperture and Stray Light Control
      2. 7.5.2 Pupil Match
      3. 7.5.3 Illumination Overfill
    6. 7.6 Micromirror Array Temperature Calculation
    7. 7.7 Micromirror Landed-On/Landed-Off Duty Cycle
      1. 7.7.1 Definition of Micromirror Landed-On/Landed-Off Duty Cycle
      2. 7.7.2 Landed Duty Cycle and Useful Life of the DMD
      3. 7.7.3 Landed Duty Cycle and Operational DMD Temperature
      4. 7.7.4 Estimating the Long-Term Average Landed Duty Cycle of a Product or Application
  8. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Application
      1. 8.2.1 Design Requirements
      2. 8.2.2 Detailed Design Procedure
      3. 8.2.3 Application Curves
    3. 8.3 Temperature Sensor Diode
  9. Power Supply Recommendations
    1. 9.1 Power Supply Sequence Requirements
    2. 9.2 DMD Power Supply Power-Up Procedure
    3. 9.3 DMD Power Supply Power-Down Procedure
  10. 10Layout
    1. 10.1 Layout Guidelines
    2. 10.2 Impedance Requirements
    3. 10.3 Layers
    4. 10.4 Trace Width, Spacing
    5. 10.5 Power
    6. 10.6 Trace Length Matching Recommendations
  11. 11Device and Documentation Support
    1. 11.1 Device Support
      1. 11.1.1 Device Nomenclature
      2. 11.1.2 Device Markings
    2. 11.2 Documentation Support
      1. 11.2.1 Related Documentation
    3. 11.3 Receiving Notification of Documentation Updates
    4. 11.4 Support Resources
    5. 11.5 Trademarks
    6. 11.6 Electrostatic Discharge Caution
    7. 11.7 Glossary
  12. 12Mechanical, Packaging, and Orderable Information
    1. 12.1 Package Option Addendum
      1. 12.1.1 Packaging Information

Package Options

Mechanical Data (Package|Pins)
  • FYP|149
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Micromirror Array Optical Characteristics

Micromirror tilt angle(1) (2) (3) (4) (5) landed state 11 12 13 °
Micromirror crossover time(6) typical performance 2.5 us
Micromirror switching time(7) typical performance 8 us
Image performance(8) Bright pixels(s) in active area(9)
Gray 10 Screen(10)

Bright pixes(s) in POM(11)
Gray 10 Screen(10)

Dark pixel(s) in active area(12)
White Screen


Adjacent pixels(13)
Any Screen


Unstable pixel(s) in active area(14)
Any Screen


Measured relative to the plane formed by the overall micromirror array.
Represents the landed tilt angle variation relative to the nominal landed tilt angle.
Represents the variation that can occur between any two individual micromirrors, located on the same device or located on different devices.
For some applications, it is critical to account for the micromirror tilt angle variation in the overall system optical design. With some system optical designs, the micromirror tilt angle variation within a device may result in perceivable non-uniformities in the light field reflected from the micromirror array. With some system optical designs, the micromirror tilt angle variation between devices may result in colorimetry variations, system efficiency variations or system contrast variations.
When the micromirror array is landed (not parked), the tilt direction of each individual micromirror is dictated by the binary contents of the CMOS memory cell associated with each individual micromirror. A binary value of 1 results in a micromirror landing in the ON State direction. A binary value of 0 results in a micromirror landing in the OFF State direction, see Figure 6-16.
The time required for a micromirror to nominally transition from one landed state to the opposite landed state.
The minimum time between successive transitions of a micromirror.
Conditions of Acceptance:  All DMD image performance returns will be evaluated using the following projected image test conditions:
      Test set degamma shall be linear
      Test set brightness and contrast shall be set to nominal
      The diagonal size of the projected image shall be a minimum of 60 inches
      The projection screen shall be 1x gain
      The projected image shall be inspected from an 8 foot minimum viewing distance
      The image shall be in focus during all image performance tests 
Bright pixel definition:  A single pixel or mirror that is stuck in the ON position and is visibly brighter that the surrounding pixels
Gray 10 screen definition: All areas of the screen are colored with the following settings:
      Red = 10/255
      Green = 10/255
      Blue = 10/255
POM definition:  Rectangular border of off-state mirror surrounding the active area.
Dark pixel definition: A single pixel or mirror that is stuck in the OFF position and is visibly darker than the surrounding pixels.
Adjacent pixel definition: Two or more stuck pixels sharing a common border or common point, also referred to as a cluster.
Unstable pixel definition: A single pixel or mirror that does not operate in sequence with the parameters loaded into memory. The unstable pixel appears to be flickering asynchronously with the image.