DLPS194A November   2020  – June 2022 DLP670S

PRODUCTION DATA  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Pin Configuration and Functions
  6. Specifications
    1. 6.1  Absolute Maximum Ratings
    2. 6.2  Storage Conditions
    3. 6.3  ESD Ratings
    4. 6.4  Recommended Operating Conditions
    5. 6.5  Thermal Information
    6. 6.6  Electrical Characteristics
    7. 6.7  Capacitance at Recommended Operating Conditions
    8. 6.8  Timing Requirements
    9. 6.9  Typical Characteristics
    10. 6.10 System Mounting Interface Loads
    11. 6.11 Micromirror Array Physical Characteristics
    12. 6.12 Micromirror Array Optical Characteristics
    13. 6.13 Window Characteristics
    14. 6.14 Chipset Component Usage Specification
  7. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 Power Interface
      2. 7.3.2 Timing
    4. 7.4 Device Functional Modes
    5. 7.5 Optical Interface and System Image Quality
      1. 7.5.1 Numerical Aperture and Stray Light Control
      2. 7.5.2 Pupil Match
      3. 7.5.3 Illumination Overfill
    6. 7.6 Micromirror Array Temperature Calculation
      1. 7.6.1 Micromirror Array Temperature Calculation using Illumination Power Density
      2. 7.6.2 Micromirror Array Temperature Calculation using Total Illumination Power
      3. 7.6.3 Micromirror Array Temperature Calculation using Screen Lumens
    7. 7.7 Micromirror Landed-On/Landed-Off Duty Cycle
      1. 7.7.1 Definition of Micromirror Landed-On/Landed-Off Duty Cycle
      2. 7.7.2 Landed Duty Cycle and Useful Life of the DMD
      3. 7.7.3 Landed Duty Cycle and Operational DMD Temperature
      4. 7.7.4 Estimating the Long-Term Average Landed Duty Cycle of a Product or Application
  8. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Application
      1. 8.2.1 Design Requirements
      2. 8.2.2 Detailed Design Procedure
    3. 8.3 DMD Die Temperature Sensing
  9. Power Supply Recommendations
    1. 9.1 DMD Power Supply Power-Up Procedure
    2. 9.2 DMD Power Supply Power-Down Procedure
    3. 9.3 Restrictions on Hot Plugging and Hot Swapping
      1. 9.3.1 No Hot Plugging
      2. 9.3.2 No Hot Swapping
      3. 9.3.3 Intermittent or Voltage Power Spike Avoidance
  10. 10Layout
    1. 10.1 Layout Guidelines
      1. 10.1.1 Critical Signal Guidelines
      2. 10.1.2 Power Connection Guidelines
      3. 10.1.3 Noise Coupling Avoidance
    2. 10.2 Layout Example
      1. 10.2.1 Layers
      2. 10.2.2 Impedance Requirements
      3. 10.2.3 Trace Width, Spacing
        1. 10.2.3.1 Voltage Signals
  11. 11Device and Documentation Support
    1. 11.1 Third-Party Products Disclaimer
    2. 11.2 Device Support
      1. 11.2.1 Device Nomenclature
      2. 11.2.2 Device Markings
    3. 11.3 Documentation Support
      1. 11.3.1 Related Documentation
    4. 11.4 Receiving Notification of Documentation Updates
    5. 11.5 Support Resources
    6. 11.6 Trademarks
    7. 11.7 Electrostatic Discharge Caution
    8. 11.8 Glossary
  12. 12Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Pin Configuration and Functions

GUID-A3065A61-5AB2-4F14-81F5-35AF88227653-low.gifFigure 5-1 FYR Package350-Pin CPGABottom View
CAUTION:

To ensure reliable, long-term operation of the DLP670S DMD, it is critical to properly manage the layout and operation of the signals identified in the table below. For specific details and guidelines, refer to Section 10.1 before designing the board.

Table 5-1 Pin Functions(1)
PIN(2) TYPE (I/O/P) SIGNAL DATA RATE(4) INTERNAL TERM(5) DESCRIPTION TRACE (mils)(6)
NAME NO.
DATA INPUTS
D_AN(0) C7 Input 2xLVDS DDR Differential LVDS pair for Data Bus A (15:0) 563
D_AP(0) C8
D_AN(1) D4
D_AP(1) E4
D_AN(2) C5
D_AP(2) C4
D_AN(3) D6
D_AP(3) C6
D_AN(4) D8
D_AP(4) D7
D_AN(5) D3
D_AP(5) E3
D_AN(6) B3
D_AP(6) C3
D_AN(7) E11
D_AP(7) E10
D_AN(8) E6
D_AP(8) E5
D_AN(9) B10
D_AP(9) C10
D_AN(10) B8
D_AP(10) B9
D_AN(11) C13
D_AP(11) C14
D_AN(12) D15
D_AP(12) E15
D_AN(13) B12
D_AP(13) B13
D_AN(14) B15
D_AP(14) B16
D_AN(15) C16
D_AP(15) C17
D_BN(0) Y8 Input 2xLVDS DDR Differential LVDS pair for Data Bus B (15:0) 563
D_BP(0) Y7
D_BN(1) X4
D_BP(1) W4
D_BN(2) Z3
D_BP(2) Y3
D_BN(3) X6
D_BP(3) Y6
D_BN(4) X8
D_BP(4) X7
D_BN(5) X3
D_BP(5) W3
D_BN(6) W15
D_BP(6) X15
D_BN(7) W11
D_BP(7) W10
D_BN(8) W6
D_BP(8) W5
D_BN(9) AA9
D_BP(9) AA10
D_BN(10) Z8
D_BP(10) Z9
D_BN(11) Y13
D_BP(11) Y14
D_BN(12) Z10
D_BP(12) Y10
D_BN(13) Z12
D_BP(13) Z13
D_BN(14) Z15
D_BP(14) Z16
D_BN(15) Y16
D_BP(15) Y17
D_CN(0) C18 Input 2xLVDS DDR Differential LVDS pair for Data Bus C (15:0) 563
D_CP(0) C19
D_CN(1) A20
D_CP(1) A19
D_CN(2) L23
D_CP(2) K23
D_CN(3) C23
D_CP(3) B23
D_CN(4) G23
D_CP(4) H23
D_CN(5) H24
D_CP(5) G24
D_CN(6) B18
D_CP(6) B19
D_CN(7) C21
D_CP(7) B21
D_CN(8) D23
D_CP(8) E23
D_CN(9) D25
D_CP(9) C25
D_CN(10) L24
D_CP(10) K24
D_CN(11) K25
D_CP(11) J25
D_CN(12) B24
D_CP(12) A24
D_CN(13) D26
D_CP(13) C26
D_CN(14) G25
D_CP(14) F25
D_CN(15) K26
D_CP(15) J26
D_DN(0) Y18 Input 2xLVDS DDR Differential LVDS pair for Data Bus D (15:0) 563
D_DP(0) Y19
D_DN(1) AA20
D_DP(1) AA19
D_DN(2) N23
D_DP(2) P23
D_DN(3) Y23
D_DP(3) Z23
D_DN(4) U23
D_DP(4) T23
D_DN(5) T24
D_DP(5) U24
D_DN(6) Z18
D_DP(6) Z19
D_DN(7) Y21
D_DP(7) Z21
D_DN(8) X23
D_DP(8) W23
D_DN(9) X25
D_DP(9) Y25
D_DN(10) N24
D_DP(10) P24
D_DN(11) P25
D_DP(11) R25
D_DN(12) Z24
D_DP(12) AA24
D_DN(13) X26
D_DP(13) Y26
D_DN(14) U25
D_DP(14) V25
D_DN(15) P26
D_DP(15) R26
DCLK_AN B6 Input LVDS Differential LVDS pair for Data Clock A (7) 563
DCLK_AP B5
DCLK_BN Z6 Input LVDS Differential LVDS pair for Data Clock B (7) 563
DCLK_BP Z5
DCLK_CN G26 Input LVDS Differential LVDS pair for Data Clock C (7) 563
DCLK_CP F26
DCLK_DN U26 Input LVDS Differential LVDS pair for Data Clock D (7) 563
DCLK_DP V26
DATA CONTROL INPUTS
SCTRL_AN A10 Input LVDS DDR Differential LVDS pair for Serial Control (Sync) A(7) 563
SCTRL_AP A9
SCTRL_BN Y4 Input LVDS DDR Differential LVDS pair for Serial Control (Sync) B(7) 563
SCTRL_BP Y5
SCTRL_CN E24 Input LVDS DDR Differential LVDS pair for Serial Control (Sync) C(7) 563
SCTRL_CP D24
SCTRL_DN W24 Input LVDS DDR Differential LVDS pair for Serial Control (Sync) D(7) 563
SCTRL_DP X24
DAD CONTROL INPUTS
RESET_ADDR(0) R3 Input LVCMOS Pulldown Reset Driver Address Select. Bond pad connects to an internal pulldown circuit.(7)
RESET_ADDR(1) R4
RESET_ADDR(2) T3
RESET_ADDR(3) U2
RESET_MODE(0) P4 Input LVCMOS Pulldown Reset Driver Mode Select. Bond pad connects to an internal pulldown circuit.(7)
RESET_MODE(1) V3
RESET_OEZ R2 Input LVCMOS Pullup Active Low. Output Enable signal for internal Reset Driver circuitry. Bond Pad connects to an internal pullup circuit.(7)
RESET_SEL(0) P3 Input LVCMOS Pulldown Reset Driver Level Select. Bond pad connects to an internal pulldown circuit.(7)
RESET_SEL(1) V2
RESET_STROBE W8 Input LVCMOS Pulldown Rising edge on RESET_STROBE latches in the control signals. Bond pad connects to an internal pulldown circuit.(7)
RESETZ U4 Input LVCMOS Pullup Active Low. Places reset circuitry in known VOFFSET state. Bond pad connects to an internal pulldown circuit.(7)
SCP CONTROL
SCPCLK W17 Input LVCMOS Pulldown Serial Communications Port Clock. SCPCLK is only active when SCPENZ goes low. Bond pad connects to an internal pulldown circuit.(7)
SCPDI W18 Input LVCMOS SDR Pulldown Serial Communications Port Data. Synchronous to the Rising Edge of SCPCLK. Bond pad connects to an internal pulldown circuit.(7)
SCPENZ X18 Input LVCMOS Pulldown Active Low Serial Communications Port Enable. Bond pad connects to an internal pulldown circuit.(7)
SCPDO W16 Output LVCMOS SDR Serial Communications Port output
EXTERNAL REGULATOR SIGNALS
EN_BIAS J4 Output LVCMOS Active High. Enable signal for external VBIAS regulator
EN_OFFSET H3 Output LVCMOS Active High. Enable signal for external VOFFSET regulator
EN_RESET J3 Output LVCMOS Active High. Enable signal for external VRESET regulator
PG_BIAS K3 Input LVCMOS Active low fault from external VBIAS regulator(7)
PG_OFFSET F2 Input LVCMOS Active low fault from external VOFFSET regulator(7)
PG_RESET F3 Input LVCMOS Active low fault from external VRESET regulator(7)
OTHER SIGNALS
RESET_IRQZ U3 Output LVCMOS Active Low. Output Interrupt to DLP controller (ASIC)
TEMP_PLUS E16 Input Analog Temperature Sensor Diode Anode(3)
TEMP_MINUS E17 Input Analog Temperature Sensor Diode Cathode (3)
POWER
VBIAS A5, A6, A7, AA5, AA6, AA7 Power Analog Power supply for Positive Bias level of micromirror reset signal
VCC A8, B2, C1, D1, D10, D12, D19, E1, E19, E20, E21, F1, K1, L1, M1, N1, P1,V1, W1, W19, W20, W21, X1, X10, X12, X19, Y1, Z1, Z2, AA2, AA8, Power Analog Power supply for low voltage CMOS logic. Power supply for normal high voltage at micromirror address electrodes. Power supply for Offset level during the power-down sequence
VCCI A11, A16, A17, A18, A21, A22, A23, AA11, AA16, AA17, AA18, AA21, AA22, AA23, Power Analog Power supply for low voltage CMOS LVDS interface
VOFFSET A3, A4, A25, B26, L26, M26, N26, Z26, AA3, AA4, AA25 Power Analog Power supply for high voltage CMOS logic. Power supply for stepped high voltage at micromirror address electrodes. Power supply for Offset level of MBRST(15:0)
VRESET G1, H1, J1, R1, T1, U1 Power Analog Power supply for Negative Reset level of micromirror reset signal
VSS (Ground) B4, B7, B11, B14, B17, B20, B22, B25, C2, C9, C20, C22, C24, D2, D5, D9, D11, D14, D18, D20, D21, D22, E2, E7, E9, E22, E25, E26, F4, F23, F24, H2, H4, H25, H26, J23, J24, K2, L2, L3, L4, L25, M2, M3, M4, M23, M24, M25, N2, N3, N25, P2,R23, R24, T2, T4, T25, T26, V4, V23, V24, W2, W7, W9, W22, W25, W26, X2, X5, X9, X11, X14, X20, X21, X22, Y2, Y9, Y20, Y22, Y24, Z4, Z7, Z11, Z14, Z17, Z20, Z22, Z25 Ground Common Return for all power
RESERVED SIGNALS
RESERVED_PFE E18 Ground LVCMOS Do Not Connect on the printed circuit board (PCB)
RESERVED_TM G4 Ground LVCMOS Do Not Connect on the printed circuit board (PCB)
RESERVED_TP0 E8 Input Analog Do Not Connect on the printed circuit board (PCB)
RESERVED_TP1 J2 Input Analog Do Not Connect on the printed circuit board (PCB)
RESERVED_TP2 G2 Input Analog Do Not Connect on the printed circuit board (PCB)
RESERVED_BA N4 Output LVCMOS Do Not Connect on the printed circuit board (PCB)
RESERVED_BB K4 Output LVCMOS Do Not Connect on the printed circuit board (PCB)
RESERVED_BC X17 Output LVCMOS Do Not Connect on the printed circuit board (PCB)
RESERVED_BD D17 Output LVCMOS Do Not Connect on the printed circuit board (PCB)
NO CONNECT C11, C12, C15, D13, D16, E12, E13, E14, W13, W12, W14, X13, X16, Y11, Y12, Y15, NC For TI Test Purposes only, Do Not Connect on the printed circuit board (PCB)
The DLP670S DMD is a component of a DLP® chipset. Reliable function and operation of the DLP670S DMD requires that it be used in conjunction with the other components of the applicable DLP® chipset, including those components that contain or implement TI DMD control technology. TI DMD control technology is the TI technology and devices for operating or controlling a DLP® DMD.
The following power supplies are required for all DMD operating modes: VSS, VBIAS, VCC, VCCI, VOFFSET, and VRESET.
VSS must be connected for proper DMD operation.
DDR = Double Data Rate, SDR = Single Data Rate, Refer to the Timing Requirements for specifications and relationships.
Internal term = CMOS level internal termination. Refer to Recommended Operating Conditions for differential termination specification.
Dielectric Constant for the DMD FYR (S610) ceramic package is approximately 9.6. For the package trace lengths shown: Propagation Speed = 11.8 / sqrt(9.6) = 3.808 in/ns. Propagation Delay = 0.262 ns/in = 10.315 ps/mm.
These signals are very sensitive to noise or intermittent power connections, which can cause irreversible DMD micromirror array damage or, to a lesser extent, image disruption. Consider this precaution during DMD board design and manufacturer handling of the DMD sub-assemblies.