DLPS052 October   2015 DLPA3000

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
    1.     Device Images
      1.      Block Diagram
  4. Revision History
  5. Pin Configuration and Functions
    1.     Pin Functions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 SPI Timing Parameters
  7. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 Supply and Monitoring
        1. 7.3.1.1 Supply
        2. 7.3.1.2 Monitoring
          1. 7.3.1.2.1 Block Faults
          2. 7.3.1.2.2 Low Battery and UVLO
          3. 7.3.1.2.3 Auto LED Turn Off Functionality
          4. 7.3.1.2.4 Thermal Protection
      2. 7.3.2 Illumination
        1. 7.3.2.1 Programmable Gain Block
        2. 7.3.2.2 LDO Illum
        3. 7.3.2.3 Illumination Driver A
        4. 7.3.2.4 RGB Strobe Decoder
          1. 7.3.2.4.1 Break Before Make (BBM)
          2. 7.3.2.4.2 Openloop Voltage
          3. 7.3.2.4.3 Transient Current Limit
        5. 7.3.2.5 Illumination Monitoring
          1. 7.3.2.5.1 Power Good
          2. 7.3.2.5.2 Ratio Metric Overvoltage Protection
        6. 7.3.2.6 Load Current and Supply Voltage
        7. 7.3.2.7 Illumination Driver Plus Power FETS Efficiency
      3. 7.3.3 DMD Supplies
        1. 7.3.3.1 LDO DMD
        2. 7.3.3.2 DMD HV Regulator
          1. 7.3.3.2.1 Power-Up and Power-Down Timing
        3. 7.3.3.3 DMD/DLPC Buck Converters
        4. 7.3.3.4 DMD Monitoring
          1. 7.3.3.4.1 Power Good
          2. 7.3.3.4.2 Overvoltage Fault
      4. 7.3.4 Buck Converters
        1. 7.3.4.1 LDO Bucks
        2. 7.3.4.2 General Purpose Buck Converters
        3. 7.3.4.3 Buck Converter Monitoring
          1. 7.3.4.3.1 Power Good
          2. 7.3.4.3.2 Overvoltage Fault
        4. 7.3.4.4 Buck Converter Efficiency
      5. 7.3.5 Auxiliary LDOs
      6. 7.3.6 Measurement System
      7. 7.3.7 Digital Control
        1. 7.3.7.1 SPI
        2. 7.3.7.2 Interrupt
        3. 7.3.7.3 Fast-Shutdown in Case of Fault
        4. 7.3.7.4 Protected Registers
        5. 7.3.7.5 Writing to EEPROM
    4. 7.4 Device Functional Modes
    5. 7.5 Register Maps
  8. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Applications
      1. 8.2.1 Typical Application Setup Using DLPA3000
        1. 8.2.1.1 Design Requirements
        2. 8.2.1.2 Detailed Design Procedure
        3. 8.2.1.3 Application Curve
      2. 8.2.2 Typical Application with DLPA3000 Internal Block Diagram
  9. Power Supply Recommendations
  10. 10Layout
    1. 10.1 Layout Guidelines
    2. 10.2 Layout Example
    3. 10.3 SPI Connections
    4. 10.4 RLIM Routing
    5. 10.5 LED Connection
    6. 10.6 Thermal Considerations
  11. 11Device and Documentation Support
    1. 11.1 Device Support
      1. 11.1.1 Device Nomenclature
    2. 11.2 Related Links
    3. 11.3 Community Resources
    4. 11.4 Trademarks
    5. 11.5 Electrostatic Discharge Caution
    6. 11.6 Glossary
  12. 12Mechanical, Packaging, and Orderable Information
    1. 12.1 Package Option Addendum
      1. 12.1.1 Packaging Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)

Device Functional Modes

Table 7. Modes of Operation

MODE DESCRIPTION
OFF This is the lowest-power mode of operation. All power functions are turned off, registers are reset to their default values, and the IC does not respond to SPI commands. RESET_Z pin is pulled low. The IC will enter OFF mode whenever the PROJ_ON pin is low.
WAIT The DMD regulators and LED power (VLED) are turned off, but the IC does respond to the SPI. The device enters WAIT mode whenever PROJ_ON is set high, DMD_EN(1) bit is set to 0 or a FAULT is resolved.
STANDBY The device also enters STANDBY mode when a fault condition is detected. (2) (See Interrupt). Once the fault condition is resolved, WAIT mode is entered.
ACTIVE1 The DMD supplies are enabled but LED power (VLED) is disabled. PROJ_ON pin must be high, DMD_EN bit must be set to 1, and ILLUM_EN(3) bit is set to 0.
ACTIVE2 DMD supplies and LED power are enabled. PROJ_ON pin must be high and DMD_EN and ILLUM_EN bits must both be set to 1.
Settings can be done through register 0x01
Power-good faults, overvoltage, over-temperature shutdown, and undervoltage lockout
Settings can be done through register 0x01, bit is named ILLUM_EN

Table 8. Device State as a Function of Control-Pin Status

PROJ_ON Pin STATE
LOW OFF
HIGH WAIT
STANDBY
ACTIVE1
ACTIVE2
(Device state depends on DMD_EN and ILLUM_EN bits and whether there are any fault conditions.)
DLPA3000 State_Diagram.gif
|| = OR, & = AND
FAULT = Undervoltage on any supply, thermal shutdown, or UVLO detection
UVLO detection, per the diagram, causes the DLPA3000 to go into the standby state. This is not the lowest power state. If lower power is desired, PROJ_ON should be set low.
DMD_EN register bit can be reset or set by SPI writes. DMD_EN defaults to 0 when PROJ_ON goes from low to high and then the DPP ASIC software automatically sets it to 1. Also, FAULT = 1 causes the DMD_EN register bit to be reset.
D_CORE_EN is a signal internal to the DLPA3000. This signal turns on the VCORE regulator.
Figure 26. State Diagram