DLPS222A December   2021  – February 2023 DLPC4420

PRODUCTION DATA  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Pin Configuration and Functions
  6. Specifications
    1. 6.1  Absolute Maximum Ratings
    2. 6.2  ESD Ratings
    3. 6.3  Recommended Operating Conditions
    4. 6.4  Thermal Information
    5. 6.5  Electrical Characteristics
    6. 6.6  System Oscillators Timing Requirements
    7. 6.7  Test and Reset Timing Requirements
    8. 6.8  JTAG Interface: I/O Boundary Scan Application Timing Requirements
    9. 6.9  Port 1 Input Pixel Timing Requirements
    10. 6.10 Port 3 Input Pixel Interface (via GPIO) Timing Requirements
    11. 6.11 DMD LVDS Interface Timing Requirements
    12. 6.12 Synchronous Serial Port (SSP) Interface Timing Requirements
    13. 6.13 Programmable Output Clocks Switching Characteristics
    14. 6.14 Synchronous Serial Port Interface (SSP) Switching Characteristics
    15. 6.15 JTAG Interface: I/O Boundary Scan Application Switching Characteristics
  7. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 System Reset Operation
        1. 7.3.1.1 Power-Up Reset Operation
        2. 7.3.1.2 System Reset Operation
      2. 7.3.2 Spread Spectrum Clock Generator Support
      3. 7.3.3 GPIO Interface
      4. 7.3.4 Source Input Blanking
      5. 7.3.5 Video Graphics Processing Delay
      6. 7.3.6 Program Memory Flash/SRAM Interface
      7. 7.3.7 Calibration and Debug Support
      8. 7.3.8 Board Level Test Support
    4. 7.4 Device Functional Modes
      1. 7.4.1 Standby Mode
      2. 7.4.2 Active Mode
        1. 7.4.2.1 Normal Configuration
  8. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Application
      1. 8.2.1 Design Requirements
        1. 8.2.1.1 Recommended MOSC Crystal Oscillator Configuration
      2. 8.2.2 Detailed Design Procedure
  9. Power Supply Recommendations
    1. 9.1 System Power Regulations
    2. 9.2 System Power-Up Sequence
    3. 9.3 Power-On Sense (POSENSE) Support
    4. 9.4 System Environment and Defaults
      1. 9.4.1 DLPC4420 System Power-Up and Reset Default Conditions
      2. 9.4.2 1.1V System Power
      3. 9.4.3 1.8V System Power
      4. 9.4.4 3.3V System Power
      5. 9.4.5 Power Good (PWRGOOD) Support
      6. 9.4.6 5V Tolerant Support
  10. 10Layout
    1. 10.1 Layout Guidelines
      1. 10.1.1 PCB Layout Guidelines for Internal DLPC4420 Power
      2. 10.1.2 PCB Layout Guidelines for Auto-Lock Performance
      3. 10.1.3 DMD Interface Considerations
      4. 10.1.4 Layout Example
      5. 10.1.5 Thermal Considerations
  11. 11Device and Documentation Support
    1. 11.1 Third-Party Products Disclaimer
    2. 11.2 Device Support
      1. 11.2.1 Video Timing Parameter Definitions
      2. 11.2.2 Device Nomenclature
      3. 11.2.3 Device Markings
        1. 11.2.3.1 Device Marking
    3. 11.3 Documentation Support
      1. 11.3.1 Related Documentation
    4. 11.4 Receiving Notification of Documentation Updates
    5. 11.5 Support Resources
    6. 11.6 Trademarks
    7. 11.7 Electrostatic Discharge Caution
    8. 11.8 Glossary
  12. 12Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Thermal Considerations

The underlying thermal limitation for the DLPC4420 controller is that the maximum operating junction temperature (TJ) not be exceeded (this is defined in the GUID-8E938F6C-55F0-4AA1-9335-C61DD98727FF.html#GUID-8E938F6C-55F0-4AA1-9335-C61DD98727FF). This temperature is dependent on operating ambient temperature, airflow, PCB design (including the component layout density and the amount of copper used), power dissipation of the DLPC6421 device and power dissipation of surrounding components. The DLPC4420 package is designed primarily to extract heat through the power and ground planes of the PCB, thus copper content and airflow over the PCB are important factors.

The recommended maximum operating ambient temperature (TA) is provided primarily as a design target and is based on maximum DLPC4420 power dissipation and RθJA at 1 m/s of forced airflow, where RθJA is the thermal resistance of the package as measured using a JEDEC defined standard test PCB. This JEDEC test PCB is not necessarily representative of the DLPC4420 PCB, and thus the reported thermal resistance may not be accurate in the actual product application. Although the actual thermal resistance may be different, it is the best information available during the design phase to estimate thermal performance. However, after the PCB is designed and the product is built, it is highly recommended that thermal performance be measured and validated.

To do this, the top center case temperature has to be measured under the worst case product scenario (max power dissipation, max voltage, max ambient temp) and validated not to exceed the maximum recommended case temperature (TC). This specification is based on the measured φJT for the DLPC4420 package and provides a relatively accurate correlation to junction temperature. Note that care must be taken when measuring this case temperature to prevent accidental cooling of the package surface. A small (approximately 40 gauge) thermocouple is recommended. The bead and the thermocouple wire must contact the top of the package and be covered with a minimal amount of thermally conductive epoxy. The wires must be routed closely along the package and the board surface to avoid cooling the bead through the wires.