SNOSCY5B August   2014  – April 2015 FDC1004

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
  4. Typical Application
  5. Revision History
  6. Pin Configuration and Functions
  7. Specifications
    1. 7.1 Absolute Maximum Ratings
    2. 7.2 ESD Ratings
    3. 7.3 Recommended Operating Conditions
    4. 7.4 Thermal Information
    5. 7.5 Electrical Characteristicsnote to Electrical Characteristics table
    6. 7.6 I2C Interface Voltage Level
    7. 7.7 I2C Interface Timing
    8. 7.8 Typical Characteristics
  8. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1 The Shield
      2. 8.3.2 The CAPDAC
      3. 8.3.3 Capacitive System Offset Calibration
      4. 8.3.4 Capacitive Gain Calibration
    4. 8.4 Device Functional Modes
      1. 8.4.1 Single Ended Measurement
      2. 8.4.2 Differential Measurement
    5. 8.5 Programming
      1. 8.5.1 Serial Bus Address
      2. 8.5.2 Read/Write Operations
      3. 8.5.3 Device Usage
        1. 8.5.3.1 Measurement Configuration
        2. 8.5.3.2 Triggering Measurements
        3. 8.5.3.3 Wait for Measurement Completion
        4. 8.5.3.4 Read of Measurement Result
    6. 8.6 Register Maps
      1. 8.6.1 Registers
        1. 8.6.1.1 Capacitive Measurement Registers
      2. 8.6.2 Measurement Configuration Registers
      3. 8.6.3 FDC Configuration Register
      4. 8.6.4 Offset Calibration Registers
      5. 8.6.5 Gain Calibration Registers
      6. 8.6.6 Manufacturer ID Register
      7. 8.6.7 Device ID Register
  9. Applications and Implementation
    1. 9.1 Application Information
      1. 9.1.1 Liquid Level Sensor
    2. 9.2 Typical Application
      1. 9.2.1 Design Requirements
      2. 9.2.2 Detailed Design Procedure
      3. 9.2.3 Application Performance Plot
    3. 9.3 Do's and Don'ts
    4. 9.4 Initialization Set Up
  10. 10Power Supply Recommendations
  11. 11Layout
    1. 11.1 Layout Guidelines
    2. 11.2 Layout Example
  12. 12Device and Documentation Support
    1. 12.1 Documentation Support
      1. 12.1.1 Related Documentation
    2. 12.2 Trademarks
    3. 12.3 Electrostatic Discharge Caution
    4. 12.4 Glossary
  13. 13Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

11 Layout

11.1 Layout Guidelines

The FDC1004 measures the capacitances connected between the CINn (n=1..4) pins and GND. To get the best result, locate the FDC1004 as close as possible to the capacitive sensor. Minimize the connection length between the sensor and FDC1004 CINn pins and between the sensor ground and the FDC1004 GND pin. If a shielded cable is used for remote sensor connection, the shield should be connected to the SHLDm (m=1...2) pin according to the configured measurement.

11.2 Layout Example

Figure 17 below is optimized for applications where the sensor is not too far from the FDC1004. Each channel trace runs between 2 shield traces. This layout allows the measurements of 4 single ended capacitance or 2 differential capacitance. The ground plane needs to be far from the channel traces, it is mandatory around or below the I2C pin.

FDC1004 LAYOUT_COBER.gifFigure 17. Layout