SBOS644C February   2013  – March 2018 INA231

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
    1.     Device Images
      1.      High-or Low-Side Sensing
  4. Revision History
  5. Device Comparison Table
  6. Pin Configuration and Functions
    1.     Pin Functions
  7. Specifications
    1. 7.1 Absolute Maximum Ratings
    2. 7.2 ESD Ratings
    3. 7.3 Recommended Operating Conditions
    4. 7.4 Thermal Information
    5. 7.5 Electrical Characteristics
    6. 7.6 Timing Requirements: I2C Bus
    7. 7.7 Typical Characteristics
  8. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1 Basic Analog-to-Digital Converter (ADC) Functions
        1. 8.3.1.1 Power Calculation
        2. 8.3.1.2 ALERT Pin
    4. 8.4 Device Functional Modes
      1. 8.4.1 Averaging and Conversion Time Considerations
    5. 8.5 Programming
      1. 8.5.1 Configure, Measure, and Calculate Example
      2. 8.5.2 Programming the Power Measurement Engine
        1. 8.5.2.1 Calibration Register and Scaling
      3. 8.5.3 Simple Current Shunt Monitor Usage (No Programming Necessary)
      4. 8.5.4 Default INA231 Settings
      5. 8.5.5 Writing to and Reading from the INA231
        1. 8.5.5.1 Bus Overview
          1. 8.5.5.1.1 Serial Bus Address
          2. 8.5.5.1.2 Serial Interface
        2. 8.5.5.2 High-Speed I2C Mode
      6. 8.5.6 SMBus Alert Response
    6. 8.6 Register Maps
      1. Table 3. Summary of Register Set
      2. 8.6.1     Configuration Register (00h, Read/Write)
        1. Table 4. Configuration Register (00h, Read/Write) Descriptions
        2. 8.6.1.1   AVG Bit Settings [11:9]
          1. Table 5. AVG Bit Settings [11:9] Description
        3. 8.6.1.2   VBUS CT Bit Settings [8:6]
          1. Table 6. VBUS CT Bit Settings [8:6] Description
        4. 8.6.1.3   VSH CT Bit Settings [5:3]
          1. Table 7. Register Description VSH CT Bit Settings [5:3]
        5. 8.6.1.4   Mode Settings [2:0]
          1. Table 8. Mode Settings [2:0]
      3. 8.6.2     Shunt Voltage Register (01h, Read-Only)
        1. Table 9. Shunt Voltage Register (01h, Read-Only) Description
      4. 8.6.3     Bus Voltage Register (02h, Read-Only)
        1. Table 10. Bus Voltage Register (02h, Read-Only) Description
      5. 8.6.4     Power Register (03h, Read-Only)
        1. Table 11. Power Register (03h, Read-Only) Description
      6. 8.6.5     Current Register (04h, Read-Only)
        1. Table 12. Current Register (04h, Read-Only) Description
      7. 8.6.6     Calibration Register (05h, Read/Write)
        1. Table 13. Calibration Register (05h, Read/Write) Description
      8. 8.6.7     Mask/Enable Register (06h, Read/Write)
        1. Table 14. Mask/Enable Register (06h, Read/Write) Description
      9. 8.6.8     Alert Limit Register (07h, Read/Write)
        1. Table 15. Alert Limit Register (07h, Read/Write) Description
  9. Application and Implementation
    1. 9.1 Application Information
      1. 9.1.1 Filtering and Input Considerations
    2. 9.2 Typical Applications
      1. 9.2.1 Design Requirements
      2. 9.2.2 Detailed Design Procedure
      3. 9.2.3 Application Curves
  10. 10Power Supply Recommendations
  11. 11Layout
    1. 11.1 Layout Guidelines
    2. 11.2 Layout Example
  12. 12Device and Documentation Support
    1. 12.1 Documentation Support
      1. 12.1.1 Related Documentation
    2. 12.2 Receiving Notification of Documentation Updates
    3. 12.3 Community Resources
    4. 12.4 Trademarks
    5. 12.5 Electrostatic Discharge Caution
    6. 12.6 Glossary
  13. 13Mechanical, Packaging, and Orderable Information

Package Options

Refer to the PDF data sheet for device specific package drawings

Mechanical Data (Package|Pins)
  • YFF|12
  • YFD|12
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Bus Overview

The INA231 offers compatibility with both I2C and SMBus interfaces. The I2C and SMBus protocols are essentially compatible with one another.

The I2C interface is used throughout this data sheet as the primary example, with SMBus protocol specified only when a difference between the two systems is discussed. Two bidirectional lines, SCL and SDA, connect the INA231 to the bus. Both SCL and SDA are open-drain connections.

The device that initiates a data transfer is called a master, and the devices controlled by the master are slaves. The bus must be controlled by a master device that generates the serial clock (SCL), controls the bus access, and generates start and stop conditions.

To address a specific device, the master initiates a start condition by pulling the data signal line (SDA) from a high to a low logic level while SCL is high. All slaves on the bus shift in the slave address byte on the rising edge of SCL, with the last bit indicating whether a read or write operation is intended. During the ninth clock pulse, the slave being addressed responds to the master by generating an Acknowledge bit (ACK) and pulling SDA low.

Data transfer is then initiated and eight bits of data are sent, followed by an ACK. During data transfer, SDA must remain stable while SCL is high. Any change in SDA while SCL is high is interpreted as a start or stop condition.

After all data have been transferred, the master generates a stop condition indicated by pulling SDA from low to high while SCL is high. The INA231 includes a 28-ms timeout on its interface to prevent locking up the bus.