SNVSCF4 July   2025 LM25139-Q1

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Pin Configuration and Functions
    1. 4.1 Wettable Flanks
  6. Specifications
    1. 5.1 Absolute Maximum Ratings
    2. 5.2 ESD Ratings 
    3. 5.3 Recommended Operating Conditions
    4. 5.4 Thermal Information
    5. 5.5 Electrical Characteristics
    6. 5.6 Typical Characteristics
  7. Detailed Description
    1. 6.1 Overview
    2. 6.2 Functional Block Diagram
    3. 6.3 Feature Description
      1. 6.3.1  Input Voltage Range (VIN )
      2. 6.3.2  High-Voltage Bias Supply Regulator (VCC)
      3. 6.3.3  Precision Enable (EN)
      4. 6.3.4  Power-Good Monitor (PG)
      5. 6.3.5  Switching Frequency (RT)
      6. 6.3.6  Dual Random Spread Spectrum (DRSS)
      7. 6.3.7  Soft Start
      8. 6.3.8  Output Voltage Setpoint (FB)
      9. 6.3.9  Minimum Controllable On Time
      10. 6.3.10 Error Amplifier and PWM Comparator (FB)
      11. 6.3.11 Slope Compensation
      12. 6.3.12 Inductor Current Sense (ISNS, VOUT)
        1. 6.3.12.1 Shunt Current Sensing
        2. 6.3.12.2 Inductor DCR Current Sensing
        3. 6.3.12.3 Hiccup-Mode Current Limiting
    4. 6.4 Device Functional Modes
      1. 6.4.1 Sleep Mode
      2. 6.4.2 Forced PWM and Synchronization (FPWM/SYNC)
      3. 6.4.3 Thermal Shutdown
  8. Application and Implementation
    1. 7.1 Application Information
      1. 7.1.1 Power Train Components
        1. 7.1.1.1 Buck Inductor
        2. 7.1.1.2 Output Capacitors
        3. 7.1.1.3 Input Capacitors
        4. 7.1.1.4 Power MOSFETs
        5. 7.1.1.5 EMI Filter
      2. 7.1.2 Error Amplifier and Compensation
    2. 7.2 Typical Applications
      1. 7.2.1 Design 1 – High Efficiency 2.2MHz Synchronous Buck Regulator
        1. 7.2.1.1 Design Requirements
        2. 7.2.1.2 Detailed Design Procedure
          1. 7.2.1.2.1 Custom Design With WEBENCH® Tools
          2. 7.2.1.2.2 Buck Inductor
          3. 7.2.1.2.3 Current-Sense Components
          4. 7.2.1.2.4 Output Capacitors
          5. 7.2.1.2.5 Input Capacitors
          6. 7.2.1.2.6 Frequency Set Resistor
          7. 7.2.1.2.7 Feedback Resistors
          8. 7.2.1.2.8 Compensation Components
        3. 7.2.1.3 Application Curves
      2. 7.2.2 Design 2 – High-Efficiency, 440kHz, Synchronous Buck Regulator
        1. 7.2.2.1 Design Requirements
        2. 7.2.2.2 Detailed Design Procedure
        3. 7.2.2.3 Application Curves
    3. 7.3 Power Supply Recommendations
    4. 7.4 Layout
      1. 7.4.1 Layout Guidelines
        1. 7.4.1.1 Power Stage Layout
        2. 7.4.1.2 Gate Drive Layout
        3. 7.4.1.3 PWM Controller Layout
        4. 7.4.1.4 Thermal Design and Layout
        5. 7.4.1.5 Ground Plane Design
      2. 7.4.2 Layout Example
  9. Device and Documentation Support
    1. 8.1 Device Support
      1. 8.1.1 Development Support
        1. 8.1.1.1 Custom Design With WEBENCH® Tools
    2. 8.2 Documentation Support
      1. 8.2.1 Related Documentation
        1. 8.2.1.1 Low-EMI Design Resources
        2. 8.2.1.2 Thermal Design Resources
        3. 8.2.1.3 PCB Layout Resources
    3. 8.3 Receiving Notification of Documentation Updates
    4. 8.4 Support Resources
    5. 8.5 Trademarks
    6. 8.6 Electrostatic Discharge Caution
    7. 8.7 Glossary
  10. Revision History
  11. 10Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Buck Inductor

For most applications, choose a buck inductance such that the inductor ripple current, ΔIL, is between 30% to 50% of the maximum DC output current at nominal input voltage. Use Equation 12 to choose the inductance based on a peak inductor current given by Equation 13.

Equation 12. L=VOUTIL×FSW×1-VOUTVIN(nom)
Equation 13. IL(peak)=IOUT+IL2

Check the inductor data sheet to make sure that the saturation current of the inductor is well above the peak inductor current of a particular design. Ferrite designs have very low core loss and are preferred at high switching frequencies, so design goals can then concentrate on copper loss and preventing saturation. Low inductor core loss is evidenced by reduced no-load input current and higher light-load efficiency. However, ferrite core materials exhibit a hard saturation characteristic and the inductance collapses abruptly when the saturation current is exceeded. This action results in an abrupt increase in inductor ripple current and higher output voltage ripple, not to mention reduced efficiency and compromised reliability. Note that the saturation current of an inductor generally decreases as the core temperature increases. Of course, accurate overcurrent protection is key to avoiding inductor saturation.