SNOSDA4B June   2020  – December 2020 LM339LV , LM393LV

PRODMIX  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Pin Configuration and Functions
    1. 5.1 Pin Functions: LM393LV
    2. 5.2 Pin Functions: LM339LV
  6. Specifications
    1. 6.1  Absolute Maximum Ratings
    2. 6.2  ESD Ratings
    3. 6.3  Recommended Operating Conditions
    4. 6.4  Thermal Information, LM393LV
    5. 6.5  Thermal Information, LM339LV
    6. 6.6  Electrical Characteristics, LM393LV
    7. 6.7  Switching Characteristics, LM393LV
    8. 6.8  Electrical Characteristics, LM339LV
    9. 6.9  Switching Characteristics, LM339LV
    10. 6.10 Typical Characteristics
  7. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
    4. 7.4 Device Functional Modes
      1. 7.4.1 Open Drain Output
      2. 7.4.2 Power-On Reset (POR)
      3. 7.4.3 Inputs
        1. 7.4.3.1 Rail to Rail Input
        2. 7.4.3.2 Fault Tolerant Inputs
        3. 7.4.3.3 Input Protection
      4. 7.4.4 ESD Protection
      5. 7.4.5 Unused Inputs
      6. 7.4.6 Hysteresis
  8. Application and Implementation
    1. 8.1 Application Information
      1. 8.1.1 Basic Comparator Definitions
        1. 8.1.1.1 Operation
        2. 8.1.1.2 Propagation Delay
        3. 8.1.1.3 Overdrive Voltage
      2. 8.1.2 Hysteresis
        1. 8.1.2.1 Inverting Comparator With Hysteresis
        2. 8.1.2.2 Non-Inverting Comparator With Hysteresis
    2. 8.2 Typical Applications
      1. 8.2.1 Window Comparator
        1. 8.2.1.1 Design Requirements
        2. 8.2.1.2 Detailed Design Procedure
        3. 8.2.1.3 Application Curve
      2. 8.2.2 Square-Wave Oscillator
        1. 8.2.2.1 Design Requirements
        2. 8.2.2.2 Detailed Design Procedure
        3. 8.2.2.3 Application Curve
      3. 8.2.3 Adjustable Pulse Width Generator
      4. 8.2.4 Time Delay Generator
      5. 8.2.5 Logic Level Shifter
      6. 8.2.6 One-Shot Multivibrator
      7. 8.2.7 Bi-Stable Multivibrator
      8. 8.2.8 Zero Crossing Detector
      9. 8.2.9 Pulse Slicer
  9. Power Supply Recommendations
  10. 10Layout
    1. 10.1 Layout Guidelines
    2. 10.2 Layout Example
  11. 11Device and Documentation Support
    1. 11.1 Related Documentation
    2. 11.2 Receiving Notification of Documentation Updates
    3. 11.3 Support Resources
    4. 11.4 Trademarks
    5. 11.5 Electrostatic Discharge Caution
    6. 11.6 Glossary
  12. 12Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Non-Inverting Comparator With Hysteresis

A noninverting comparator with hysteresis requires a two-resistor network and a voltage reference (VREF) at the inverting input, as shown in Figure 8-5,

GUID-79DA8FAE-47EE-4E72-B178-2184F451CEC1-low.gifFigure 8-5 Non-Inverting Configuration With Hysteresis

The equivalent resistor networks when the output is high and low are shown in Figure 8-6 Note that RPU should be considered in series with R2 when the output is high. RPU should be at least 10x less than R2.

GUID-107CADC5-A8DB-442B-A464-37CD3D72C3F4-low.gifFigure 8-6 Non-Inverting Configuration Resistor Networks

When VIN is less than VREF,, the output is low. For the output to switch from low to high, VIN must rise above the VIN1 threshold. Use Equation 4 to calculate VIN1.

Equation 4. GUID-EED9162C-6698-49E3-B975-7BF0F5E75D8D-low.gif

When VIN is greater than VREF, the output is high. For the comparator to switch back to a low state, VIN must drop below VIN2. Use Equation 5 to calculate VIN2.

Equation 5. GUID-176D7137-F47A-440B-A5B2-FBF227241B6F-low.gif

The hysteresis of this circuit is the difference between VIN1 and VIN2, as shown in Equation 6.

Equation 6. GUID-365DF3E5-EABC-4216-A86E-F86F5EEB0B21-low.gif

For more information, please see Application Notes SNOA997 "Inverting comparator with hysteresis circuit" and SBOA313 "Non-Inverting Comparator With Hysteresis Circuit".