SNOS760C May   1999  – September 2014 LM7171

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Pin Configuration and Functions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 Handling Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 ±15V DC Electrical Characteristics
    6. 6.6 ±15V AC Electrical Characteristics
    7. 6.7 ±5V DC Electrical Characteristics
    8. 6.8 ±5V AC Electrical Characteristics
    9. 6.9 Typical Performance Characteristics
  7. Application and Implementation
    1. 7.1 Application Information
    2. 7.2 Circuit Operation
    3. 7.3 Slew Rate Characteristic
    4. 7.4 Slew Rate Limitation
    5. 7.5 Compensation For Input Capacitance
    6. 7.6 Application Circuit
  8. Power Supply Recommendations
    1. 8.1 Power Supply Bypassing
    2. 8.2 Termination
    3. 8.3 Driving Capacitive Loads
    4. 8.4 Power Dissipation
  9. Layout
    1. 9.1 Layout Guidelines
      1. 9.1.1 Printed Circuit Board and High Speed Op Amps
      2. 9.1.2 Using Probes
      3. 9.1.3 Component Selection and Feedback Resistor
  10. 10Device and Documentation Support
    1. 10.1 Trademarks
    2. 10.2 Electrostatic Discharge Caution
    3. 10.3 Glossary
  11. 11Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

6 Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted) (1)
MIN MAX UNIT
Supply Voltage (V+–V) 36 V
Differential Input Voltage (11) ±10 V
Output Short Circuit to Ground (3) Continuous
Maximum Junction Temperature (4) 150 °C
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

6.2 Handling Ratings

MIN MAX UNIT
Tstg Storage temperature range −65 +150 °C
V(ESD) Electrostatic discharge(2) Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins(1) 2500 V
(1) JEDEC document JEP155 states that 2500-V HBM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions(1)

over operating free-air temperature range (unless otherwise noted)
MIN TYP MAX UNIT
Supply Voltage 5.5V ≤ VS ≤ 36 V
Operating Temperature Range: LM7171AI, LM7171BI  −40 +85 °C

6.4 Thermal Information

THERMAL METRIC(1) P (PDIP) D (SOIC) UNIT
8 PINS 8 PINS
RθJA Junction-to-ambient thermal resistance 108° 172° °C/W
(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.

6.5 ±15V DC Electrical Characteristics

Unless otherwise noted, all limits are specified for V+ = +15 V, V = –15 V, VCM = 0V, and RL = 1 kΩ. Boldface limits apply at the temperature extremes
PARAMETER TEST CONDITIONS TYP
(5)
LM7171AI
LIMIT(6)
LM7171BI
LIMIT(6)
UNIT
VOS Input Offset Voltage 0.2 1 3 mV
4 7 max
TC VOS Input Offset Voltage Average Drift 35 μV/°C
IB Input Bias Current 2.7 10 10 μA
12 12 max
IOS Input Offset Current 0.1 4 4 μA
6 6 max
RIN Input Resistance Common Mode 40
Differential Mode 3.3
RO Open Loop Output Resistance 15 Ω
CMRR Common Mode Rejection Ratio VCM = ±10V 105 85 75 dB
80 70 min
PSRR Power Supply Rejection Ratio VS = ±15V to ±5V 90 85 75 dB
80 70 min
VCM Input Common-Mode Voltage Range CMRR > 60 dB ±13.35 V
AV Large Signal Voltage Gain (7) RL = 1 kΩ 85 80 75 dB
75 70 min
RL = 100Ω 81 75 70 dB
70 66 min
VO Output Swing RL = 1 kΩ 13.3 13 13 V
12.7 12.7 min
−13.2 −13 −13 V
−12.7 −12.7 max
RL = 100Ω 11.8 10.5 10.5 V
9.5 9.5 min
−10.5 −9.5 −9.5 V
−9 −9 max
Output Current (Open Loop)  (8) Sourcing, RL = 100Ω 118 105 105 mA
95 95 min
Sinking, RL = 100Ω 105 95 95 mA
90 90 max
Output Current (in Linear Region) Sourcing, RL = 100Ω 100 mA
Sinking, RL = 100Ω 100
ISC Output Short Circuit Current Sourcing 140 mA
Sinking 135
IS Supply Current 6.5 8.5 8.5 mA
9.5 9.5 max

6.6 ±15V AC Electrical Characteristics

Unless otherwise noted, all limits are specified for V+ = +15V, V = −15V, VCM = 0V, and RL = 1 kΩ.
PARAMETER CONDITIONS TYP(5) LM7171AI
LIMIT(6)
LM7171BI
LIMIT(6)
UNIT
SR Slew Rate (9) AV = +2, VIN = 13 VPP 4100 V/μs
AV = +2, VIN = 10 VPP 3100
Unity-Gain Bandwidth 200 MHz
−3 dB Frequency AV = +2 220 MHz
φm Phase Margin 50 Deg
ts Settling Time (0.1%) AV = −1, VO = ±5V
RL = 500Ω
42 ns
tp Propagation Delay AV = −2, VIN = ±5V,
RL = 500Ω
5 ns
AD Differential Gain (10) 0.01%
φD Differential Phase (10) 0.02 Deg
Second Harmonic Distortion(12) fIN = 10 kHz −110 dBc
fIN = 5 MHz −75 dBc
Third Harmonic Distortion(12) fIN = 10 kHz −115 dBc
fIN = 5 MHz −55 dBc
en Input-Referred Voltage Noise f = 10 kHz 14 nV/√Hz
in Input-Referred Current Noise f = 10 kHz 1.5 pA/√Hz

6.7 ±5V DC Electrical Characteristics

Unless otherwise noted, all limits are specified for V+ = +5V, V = −5V, VCM = 0V, and RL = 1 kΩ. Boldface limits apply at the temperature extremes
PARAMETER TEST CONDITIONS TYP(5) LM7171AI
LIMIT(6)
LM7171BI
LIMIT(6)
UNIT
VOS Input Offset Voltage 0.3 1.5 3.5 mV
4 7 max
TC VOS Input Offset Voltage Average Drift 35 μV/°C
IB Input Bias Current 3.3 10 10 μA
12 12 max
IOS Input Offset Current 0.1 4 4 μA
6 6 max
RIN Input Resistance Common Mode 40
Differential Mode 3.3
RO Output Resistance 15 Ω
CMRR Common Mode Rejection Ratio VCM = ±2.5V 104 80 70 dB
75 65 min
PSRR Power Supply Rejection Ratio VS = ±15V to ±5V 90 85 75 dB
80 70 min
VCM Input Common-Mode Voltage Range CMRR > 60 dB ±3.2 V
AV Large Signal Voltage Gain (7) RL = 1 kΩ 78 75 70 dB
70 65 min
RL = 100Ω 76 72 68 dB
67 63 min
VO Output Swing RL = 1 kΩ 3.4 3.2 3.2 V
3 3 min
−3.4 −3.2 −3.2 V
−3 −3 max
RL = 100Ω 3.1 2.9 2.9 V
2.8 2.8 min
−3.0 −2.9 −2.9 V
−2.8 −2.8 max
Output Current (Open Loop) (8) Sourcing, RL = 100Ω 31 29 29 mA
28 28 min
Sinking, RL = 100Ω 30 29 29 mA
28 28 max
ISC Output Short Circuit Current Sourcing 135 mA
Sinking 100
IS Supply Current 6.2 8 8 mA
9 9 max

6.8 ±5V AC Electrical Characteristics

Unless otherwise noted, all limits are specified for V+ = +5V, V = −5V, VCM = 0V, and RL = 1 kΩ.
PARAMETER TEST CONDITIONS TYP(5) LM7171AI
LIMIT(6)
LM7171BI
LIMIT(6)
UNIT
SR Slew Rate (9) AV = +2, VIN = 3.5 VPP 950 V/μs
Unity-Gain Bandwidth 125 MHz
−3 dB Frequency AV = +2 140 MHz
φm Phase Margin 57 Deg
ts Settling Time (0.1%) AV = −1, VO = ±1V,
RL = 500Ω
56 ns
tp Propagation Delay AV = −2, VIN = ±1V,
RL = 500Ω
6 ns
AD Differential Gain (1) 0.02%
φD Differential Phase (10) 0.03 Deg
Second Harmonic Distortion(12) fIN = 10 kHz −102 dBc
fIN = 5 MHz −70 dBc
Third Harmonic Distortion(12) fIN = 10 kHz −110 dBc
fIN = 5 MHz −51 dBc
en Input-Referred Voltage Noise f = 10 kHz 14 nV/√Hz
in Input-Referred Current Noise f = 10 kHz 1.8 pA/√Hz
(1) Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is intended to be functional, but specific performance is not specified. For ensured specifications and the test conditions, see the Electrical Characteristics.
(2) Human body model, 1.5 kΩ in series with 100 pF.
(3) Applies to both single-supply and split-supply operation. Continuous short circuit operation at elevated ambient temperature can result in exceeding the maximum allowed junction temperature of 150°C.
(4) The maximum power dissipation is a function of TJ(MAX), RθJA, and TA. The maximum allowable power dissipation at any ambient temperature is PD = (TJ(MAX)–TA)/RθJA. All numbers apply for packages soldered directly into a PC board.
(5) Typical values represent the most likely parametric norm.
(6) All limits are specified by testing or statistical analysis.
(7) Large signal voltage gain is the total output swing divided by the input signal required to produce that swing. For VS = ±15V, VOUT = ±5V. For VS = ±5V, VOUT = ±1V.
(8) The open loop output current is specified, by the measurement of the open loop output voltage swing, using 100Ω output load.
(9) Slew Rate is the average of the raising and falling slew rates.
(10) Differential gain and phase are measured with AV = +2, VIN = 1 VPP at 3.58 MHz and both input and output 75Ω terminated.
(11) Input differential voltage is applied at VS = ±15V.
(12) Harmonics are measured with VIN = 1 VPP, AV = +2 and RL = 100Ω.
(13) The THD measurement at low frequency is limited by the test instrument.

6.9 Typical Performance Characteristics

unless otherwise noted, TA= 25°C
01238563.png
Figure 1. Supply Current vs. Supply Voltage
01238565.png
Figure 3. Input Offset Voltage vs. Temperature
01238567.png
Figure 5. Short Circuit Current vs. Temperature (Sourcing)
01238569.png
Figure 7. Output Voltage vs. Output Current
01238571.png
Figure 9. CMRR vs. Frequency
01238573.png
Figure 11. PSRR vs. Frequency
01238552.png
Figure 13. Open Loop Frequency Response
01238554.png
Figure 15. Gain-Bandwidth Product vs. Load Capacitance
01238556.png
Figure 17. Large Signal Voltage Gain vs. Load
01238558.png
Figure 19. Input Voltage Noise vs. Frequency
01238560.png
Figure 21. Input Current Noise vs. Frequency
01238562.png
Figure 23. Slew Rate vs. Input Voltage
01238525.png
Figure 25. Open Loop Output Impedance vs. Frequency
01238527.png
Figure 27. Large Signal Pulse Response AV = −1, VS = ±15V
01238529.png
Figure 29. Large Signal Pulse Response AV = +2, VS = ±15V
01238531.png
Figure 31. Small Signal Pulse Response AV = −1, VS = ±15V
01238533.png
Figure 33. Small Signal Pulse Response AV = +2, VS = ±15V
01238535.png
Figure 35. Closed Loop Frequency Response vs. Supply Voltage (AV = +2)
01238537.png
Figure 37. Closed Loop Frequency Response vs. Capacitive Load (AV = +2)
01238543.png
Figure 39. Closed Loop Frequency Response vs. Input Signal Level (AV = +2)
01238540.png
Figure 41. Closed Loop Frequency Response vs. Input Signal Level (AV = +2)
01238545.png
Figure 43. Closed Loop Frequency Response vs. Input Signal Level (AV = +4)
01238542.png
Figure 45. Closed Loop Frequency Response vs. Input Signal Level (AV = +4)
01238547.png
Figure 47. Total Harmonic Distortion vs. Frequency (13)
01238548.png
Figure 49. Undistorted Output Swing vs. Frequency
01238574.png
Figure 51. Harmonic Distortion vs. Frequency (13)
01238520.png
Figure 53. Maximum Power Dissipation vs. Ambient Temperature
01238564.png
Figure 2. Supply Current vs. Temperature
01238566.png
Figure 4. Input Bias Current vs. Temperature
01238568.png
Figure 6. Short Circuit Current vs. Temperature (Sinking)
01238570.png
Figure 8. Output Voltage vs. Output Current
01238572.png
Figure 10. PSRR vs. Frequency
01238551.png
Figure 12. Open Loop Frequency Response
01238553.png
Figure 14. Gain-Bandwidth Product vs. Supply Voltage
01238555.png
Figure 16. Large Signal Voltage Gain vs. Load
01238557.png
Figure 18. Input Voltage Noise vs. Frequency
01238559.png
Figure 20. Input Current Noise vs. Frequency
01238561.png
Figure 22. Slew Rate vs. Supply Voltage
01238523.png
Figure 24. Slew Rate vs. Load Capacitance
01238526.png
Figure 26. Open Loop Output Impedance vs Frequency
01238528.png
Figure 28. Large Signal Pulse Response AV = −1, VS = ±5V
01238530.png
Figure 30. Large Signal Pulse Response AV = +2, VS = ±5V
01238532.png
Figure 32. Small Signal Pulse Response AV = −1, VS = ±5V
01238534.png
Figure 34. Small Signal Pulse Response AV = +2, VS = ±5V
01238536.png
Figure 36. Closed Loop Frequency Response vs. Capacitive Load (AV = +2)
01238538.png
Figure 38. Closed Loop Frequency Response vs. Input Signal Level (AV = +2)
01238539.png
Figure 40. Closed Loop Frequency Response vs. Input Signal Level (AV = +2)
01238544.png
Figure 42. Closed Loop Frequency Response vs. Input Signal Level (AV = +4)
01238541.png
Figure 44. Closed Loop Frequency Response vs. Input Signal Level (AV = +4)
01238546.png
Figure 46. Total Harmonic Distortion vs. Frequency (13)
01238549.png
Figure 48. Undistorted Output Swing vs. Frequency
01238550.png
Figure 50. Undistorted Output Swing vs. Frequency
01238575.png
Figure 52. Harmonic Distortion vs. Frequency (13)