SNOSD87A July   2021  – February 2022 LM74501-Q1

PRODUCTION DATA  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Pin Configuration and Functions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Switching Characteristics
    7. 6.7 Typical Characteristics
  7. Parameter Measurement Information
  8. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1 Input Voltage
      2. 8.3.2 Charge Pump
      3. 8.3.3 Enable
      4. 8.3.4 Gate Driver
      5. 8.3.5 SW (Battery Voltage Monitoring)
      6. 8.3.6 Gate Discharge Timer
    4. 8.4 Device Functional Modes
      1. 8.4.1 Shutdown Mode
      2. 8.4.2 Full Conduction Mode
      3. 8.4.3 VDS Clamp
  9. Application and Implementation
    1. 9.1 Application Information
      1. 9.1.1 Reverse Battery Protection
    2. 9.2 Typical Application
      1. 9.2.1 Design Requirements
      2. 9.2.2 Detailed Design Procedure
        1. 9.2.2.1 Design Considerations
        2. 9.2.2.2 MOSFET Selection
        3. 9.2.2.3 Gate Discharge Timer Capacitor Selection (CT)
        4. 9.2.2.4 Charge Pump VCAP, Input and Output Capacitance
      3. 9.2.3 Application Curves
  10. 10Power Supply Recommendations
  11. 11Layout
    1. 11.1 Layout Guidelines
    2. 11.2 Layout Example
  12. 12Device and Documentation Support
    1. 12.1 Device Support
      1. 12.1.1 Third-Party Products Disclaimer
    2. 12.2 Receiving Notification of Documentation Updates
    3. 12.3 Support Resources
    4. 12.4 Trademarks
    5. 12.5 Electrostatic Discharge Caution
    6. 12.6 Glossary
  13. 13Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Full Conduction Mode

For the LM74501-Q1 to operate in full conduction mode the gate driver must be enabled as described in the Gate Driver section. If these conditions are achieved, the GATE pin is internally connected to the VCAP pin, resulting in the GATE to SOURCE voltage being approximately the same as the VCAP to SOURCE voltage. By connecting VCAP to GATE, the external MOSFET is fully enhanced reducing the power loss of the external MOSFET.