SLVS582I April   2006  – November 2014 LP2950 , LP2951

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Pin Configuration and Functions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 Handling Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Typical Characteristics
  7. Detailed Description
    1. 7.1 Overview
    2. 7.2 LP2950 Functional Block Diagram
    3. 7.3 LP2951 Functional Block Diagram
    4. 7.4 Feature Description
      1. 7.4.1 ERROR Function (LP2951 Only)
      2. 7.4.2 Programming Output Voltage (LP2951 Only)
    5. 7.5 Device Functional Modes
      1. 7.5.1 Shutdown Mode
  8. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Application
      1. 8.2.1 Design Requirements
        1. 8.2.1.1 Input Capacitor (CIN)
        2. 8.2.1.2 Output Capacitor (COUT)
      2. 8.2.2 Detailed Design Procedure
        1. 8.2.2.1 Capacitance Value
        2. 8.2.2.2 Capacitor Types
        3. 8.2.2.3 CBYPASS: Noise and Stability Improvement
        4. 8.2.2.4 ESR Range
      3. 8.2.3 Application Curves
  9. Power Supply Recommendations
  10. 10Layout
    1. 10.1 Layout Guidelines
    2. 10.2 Layout Example
  11. 11Device and Documentation Support
    1. 11.1 Trademarks
    2. 11.2 Electrostatic Discharge Caution
    3. 11.3 Glossary
  12. 12Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

6 Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted) (1)
MIN MAX UNIT
VIN Continuous input voltage range –0.3 30 V
VSHDN SHUTDOWN input voltage range –1.5 30 V
VERROR ERROR comparator output voltage range(2) –1.5 30 V
VFDBK FEEDBACK input voltage range(2)(3) –1.5 30 V
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
(2) May exceed input supply voltage
(3) If load is returned to a negative power supply, the output must be diode clamped to GND.

6.2 Handling Ratings

MIN MAX UNIT
Tstg Storage temperature range –65 150 °C
V(ESD) Electrostatic discharge Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins(1) 0 2500 V
Charged device model (CDM), per JEDEC specification JESD22-C101, all pins(2) 0 1000
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions

MIN MAX UNIT
VIN Supply input voltage See (1) 30 V
TJ Operating virtual junction temperature –40 125 °C
(1) Minimum VIN is the greater of:
  1. 2 V (25°C), 2.3 V (over temperature), or
  2. VOUT(MAX) + Dropout (Max) at rated IL

6.4 Thermal Information

THERMAL METRIC(1) LP2950 LP2951 UNIT
LP D P DRG
3 PINS 8 PINS
RθJA Junction-to-ambient thermal resistance 140 97 84.6 52.44 °C/W
(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report (SPRA953).

6.5 Electrical Characteristics

VIN = VOUT (nominal) + 1 V, IL = 100 μA, CL = 1 μF (5-V versions) or CL = 2.2 μF (3-V and 3.3-V versions),
8-pin version: FEEDBACK tied to VTAP, OUTPUT tied to SENSE, VSHUTDOWN  ≤ 0.7 V
PARAMETER TEST CONDITIONS TJ MIN TYP MAX UNIT
3-V VERSION (LP295x-30)
VOUT Output voltage IL = 100 μA 25°C 2.970 3 3.030 V
–40°C to 125°C 2.940 3 3.060
3.3-V VERSION (LP295x-33)
VOUT Output voltage IL = 100 μA 25°C 3.267 3.3 3.333 V
–40°C to 125°C 3.234 3.3 3.366
5-V VERSION (LP295x-50)
VOUT Output voltage IL = 100 μA 25°C 4.950 5 5.050 V
–40°C to 125°C 4.900 5 5.100
ALL VOLTAGE OPTIONS
Output voltage temperature coefficient(1)  IL = 100 μA –40°C to 125°C 20 100 ppm/°C
Line regulation(2) VIN = [VOUT(NOM) + 1 V] to 30 V 25°C 0.03 0.2 %/V
–40°C to 125°C 0.4
Load regulation(2) IL = 100 μA to 100 mA 25°C 0.04% 0.2%
–40°C to 125°C 0.3%
VIN – VOUT Dropout voltage(3) IL = 100 μA 25°C 50 80 mV
–40°C to 125°C 150
IL = 100 mA 25°C 380 450
–40°C to 125°C 600
IGND GND current IL = 100 μA 25°C 75 120 μA
–40°C to 125°C 140
IL = 100 mA 25°C 8 12 mA
–40°C to 125°C 14
Dropout ground current VIN = VOUT(NOM) – 0.5 V,
IL = 100 μA
25°C 110 170 μA
–40°C to 125°C 200
Current limit VOUT = 0 V 25°C 160 200 mA
–40°C to 125°C 220
Thermal regulation(4)  IL = 100 μA 25°C 0.05 0.2 %/W
Output noise (RMS),
10 Hz to 100 kHz
CL = 1 μF (5 V only) 25°C 430 μV
CL = 200 μF 160
LP2951-50: CL = 3.3 μF,
CBypass = 0.01 μF between
pins 1 and 7
100
(LP2951-xx) 8-PIN VERSION ONLY ADJ
Reference voltage 25°C 1.218 1.235 1.252 V
–40°C to 125°C 1.212 1.257
VOUT = VREF to (VIN – 1 V),
VIN = 2.3 V to 30 V,
IL = 100 μA to 100 mA
–40°C to 125°C 1.200 1.272
Reference voltage temperature coefficient(1)   25°C 20 ppm/°C
FEEDBACK bias current 25°C 20 40 nA
–40°C to 125°C 60
FEEDBACK bias current temperature coefficient 25°C 0.1 nA/°C
ERROR COMPARATOR
Output leakage current VOUT = 30 V 25°C 0.01 1 μA
–40°C to 125°C 2
Output low voltage VIN = VOUT(NOM) – 0.5 V,
IOL = 400 μA
25°C 150 250 mV
–40°C to 125°C 400
Upper threshold voltage (ERROR output high)(5)   25°C 40 60 mV
–40°C to 125°C 25
Lower threshold voltage (ERROR output low)(5)   25°C 75 95 mV
–40°C to 125°C 140
Hysteresis(5)   25°C 15 mV
SHUTDOWN INPUT
Input logic voltage Low (regulator ON) –40°C to 125°C 0.7 V
High (regulator OFF) 2
SHUTDOWN input current SHUTDOWN = 2.4 V 25°C 30 50 μA
–40°C to 125°C 100
SHUTDOWN = 30 V 25°C 450 600
–40°C to 125°C 750
Regulator output current
in shutdown
VSHUTDOWN ≥ 2 V,
VIN ≤ 30 V, VOUT = 0,
FEEDBACK tied to VTAP
25°C 3 10 μA
–40°C to 125°C 20
(1) Output or reference voltage temperature coefficient is defined as the worst-case voltage change divided by the total temperature range.
(2) Regulation is measured at constant junction temperature, using pulse testing with a low duty cycle. Changes in output voltage due to heating effects are covered under the specification for thermal regulation.
(3) Dropout voltage is defined as the input-to-output differential at which the output voltage drops 100 mV, below the value measured at 1-V differential. The minimum input supply voltage of 2 V (2.3 V over temperature) must be observed.
(4) Thermal regulation is defined as the change in output voltage at a time (T) after a change in power dissipation is applied, excluding load or line regulation effects. Specifications are for a 50-mA load pulse at VIN = 30 V, VOUT = 5 V (1.25-W pulse) for t = 10 ms.
(5) Comparator thresholds are expressed in terms of a voltage differential equal to the nominal reference voltage (measured at VIN – VOUT = 1 V) minus FEEDBACK terminal voltage. To express these thresholds in terms of output voltage change, multiply by the error amplifier gain = VOUT/VREF = (R1 + R2)/R2. For example, at a programmed output voltage of 5 V, the ERROR output is specified to go low when the output drops by 95 mV × 5 V/1.235 V = 384 mV. Thresholds remain constant as a percentage of VOUT (as VOUT is varied), with the low-output warning occurring at 6% below nominal (typ) and 7.7% (max).

6.6 Typical Characteristics

g_iqu_il.gifFigure 1. Quiescent Current vs Load Current
g_iin_vin_rl_50k.gifFigure 3. Input Current vs Input Voltage (RL = 50 kΩ)
g_vo_ta.gifFigure 5. Output Voltage vs Temperature
g_iqu_vin_il1m.gifFigure 7. Quiescent Current vs Input Voltage (IL = 1 mA)
g_iqu_ta_il100m.gifFigure 9. Quiescent Current vs Temperature (IL = 100 mA)
g_ishort_ta.gifFigure 11. Short-circuit Current vs Temperature
g_vdrop_io.gifFigure 13. Dropout Voltage vs Dropout Current
g_feed_bias_curr_ta.gifFigure 15. LP2951 FEEDBACK Bias Current vs Temperature
g_51_comp_sink_curr.gifFigure 17. LP2951 ERROR Comparator Sink Current vs Output Low Voltage
sc_load_trans_c10u-1.gifFigure 19. Load Transient Response vs
Time (VOUT = 5 V, CL = 10 µF)
sc_en_trans_c10u.gifFigure 21. Enable Transient Response vs
Time (IL = 1 mA, CL = 10 µF)
g_psrr_f_0_100u.gifFigure 23. Ripple Rejection vs Frequency
g_psrr_f_50m_100m.gifFigure 25. Output Impedance vs Frequency
g_51_div_res.gifFigure 27. LP2951 Divider Resistance vs Temperature
g_vshdn_ta_onoff.gifFigure 29. Shutdown Threshold Voltage (On to Off) vs Temperature
g_iin_vin_rl_inf.gifFigure 2. Input Current vs Input Voltage (RL = OPEN)
g_iin_vin_rl_50.gifFigure 4. Input Current vs Input Voltage (RL = 50 Ω)
g_iqu_vin_il0.gifFigure 6. Quiescent Current vs Input Voltage (IL = 0)
g_iqu_vin_il100m.gifFigure 8. Quiescent Current vs Input Voltage (IL = 100 mA)
g_iqu_ta_il100u.gifFigure 10. Quiescent Current vs Temperature (IL = 100 µA)
g_vdrop_ta.gifFigure 12. Dropout Voltage vs Temperature
g_min_v_op_ta.gifFigure 14. LP2951 Minimum Operating Voltage vs Temperature
g_err_comp_out_vi.gifFigure 16. LP2951 ERROR Comparator Output vs
Input Voltage
sc_line_trans.gifFigure 18. Line Transient Response vs Time
sc_en_trans_c1u.gifFigure 20. Enable Transient Response vs
Time (IL = 1 mA, CL = 1 µF)
g_zo_f.gifFigure 22. Output Impedance vs Frequency
g_psrr_f_1m_10m.gifFigure 24. Output Impedance vs Frequency
g_out_noise_f.gifFigure 26. LP2951 Output Noise vs Frequency
g_vshdn_ta_offon-2.gifFigure 28. Shutdown Threshold Voltage (Off to On) vs Temperature
g_ln_reg_vin.gifFigure 30. Line Regulation vs Input Voltage