SNOSB14D August   2009  – December 2014 LPV521

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Pin Configuration and Functions
  6. Specifications
    1. 6.1  Absolute Maximum Ratings
    2. 6.2  ESD Ratings
    3. 6.3  Recommended Operating Conditions
    4. 6.4  Thermal Information
    5. 6.5  1.8-V DC Electrical Characteristics
    6. 6.6  1.8-V AC Electrical Characteristics
    7. 6.7  3.3-V DC Electrical Characteristics
    8. 6.8  3.3-V AC Electrical Characteristics
    9. 6.9  5-V DC Electrical Characteristics
    10. 6.10 5-V AC Electrical Characteristics
    11. 6.11 Typical Characteristics
  7. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
    4. 7.4 Device Functional Modes
      1. 7.4.1 Input Stage
      2. 7.4.2 Output Stage
  8. Applications and Implementation
    1. 8.1 Application Information
      1. 8.1.1 Driving Capacitive Load
      2. 8.1.2 EMI Suppression
    2. 8.2 Typical Applications
      1. 8.2.1 60-Hz Twin T-Notch Filter
        1. 8.2.1.1 Design Requirements
        2. 8.2.1.2 Detailed Design Procedure
        3. 8.2.1.3 Application Curve
      2. 8.2.2 Portable Gas Detection Sensor
        1. 8.2.2.1 Design Requirements
        2. 8.2.2.2 Detailed Design Procedure
        3. 8.2.2.3 Application Curve
      3. 8.2.3 High-Side Battery Current Sensing
        1. 8.2.3.1 Design Requirements
        2. 8.2.3.2 Detailed Design Procedure
        3. 8.2.3.3 Application Curve
  9. Power Supply Recommendations
  10. 10Layout
    1. 10.1 Layout Guidelines
    2. 10.2 Layout Example
  11. 11Device and Documentation Support
    1. 11.1 Device Support
      1. 11.1.1 Development Support
    2. 11.2 Documentation Support
      1. 11.2.1 Related Documentation
    3. 11.3 Trademarks
    4. 11.4 Electrostatic Discharge Caution
    5. 11.5 Glossary
  12. 12Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

6 Specifications

6.1 Absolute Maximum Ratings(1)

MIN MAX UNIT
Any pin relative to V- −0.3 6 V
IN+, IN-, OUT Pins V – 0.3 V V+ + 0.3 V V
V+, V-, OUT Pins 40 mA
Differential Input Voltage (VIN+ - VIN-) –300 300 mV
Junction Temperature(2) –40 150 °C
Mounting Temperature Infrared or Convection (30 sec.) 260 °C
Wave Soldering Lead Temp. (4 sec.) 260 °C
Storage temperature, Tstg −65 150 °C
(1) indicate limits beyond which damage may occur. indicate conditions for which the device is intended to be functional, but specific performance is not guaranteed. For guaranteed specifications and test conditions, see the Electrical Characteristics.

6.2 ESD Ratings

VALUE UNIT
V(ESD) Electrostatic discharge Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1) ±2000 V
Charged-device model (CDM), per JEDEC specification JESD22-C101(2) ±1000
Machine Model ±200
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions(1)

MIN MAX UNIT
Temperature Range(2) −40 125 °C
Supply Voltage (VS = V+ - V) 1.6 5.5 V
(1) indicate limits beyond which damage may occur. indicate conditions for which the device is intended to be functional, but specific performance is not guaranteed. For guaranteed specifications and test conditions, see .

6.4 Thermal Information

THERMAL METRIC(1) DCK UNIT
5 PINS
RθJA Junction-to-ambient thermal resistance (2) 456 °C/W
(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.
(2) The maximum power dissipation is a function of TJ(MAX), θJA. The maximum allowable power dissipation at any ambient temperature is PD = (TJ(MAX) – TA)/ θJA. All numbers apply for packages soldered directly onto a PC Board.

6.5 1.8-V DC Electrical Characteristics

Unless otherwise specified, all limits for TA = 25°C, V+ = 1.8 V, V = 0 V, VCM = VO = V+/2, and RL > 1 MΩ.(1)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
VOS Input Offset Voltage VCM = 0.3 V –1 0.1 1 mV
Temperature extremes –1.23 1.23
VCM = 1.5 V –1 0.1 1
Temperature extremes –1.23 1.23
TCVOS Input Offset Voltage Drift(2) ±0.4 μV/°C
Temperature extremes –3 3
IBIAS Input Bias Current –1 0.01 1 pA
Temperature extremes –50 50
IOS Input Offset Current 10 fA
CMRR Common Mode Rejection Ratio 0 V ≤ VCM ≤ 1.8 V 66 92 dB
Temperature extremes 60
0 V ≤ VCM ≤ 0.7 V 75 101
Temperature extremes 74
1.2 V ≤ VCM ≤ 1.8 V 75 120
Temperature extremes 53
PSRR Power Supply Rejection Ratio 1.6 V ≤ V+ ≤ 5.5 V
VCM = 0.3 V
85
109 dB
Temperature extremes 76
CMVR Common Mode Voltage Range CMRR ≥ 67 dB
CMRR ≥ 60 dB
0
0
1.8
V
Temperature extremes 1.8
AVOL Large Signal Voltage Gain VO = 0.5 V to 1.3 V
RL = 100 kΩ to V+/2
74
125 dB
Temperature extremes 73
VO Output Swing High RL = 100 kΩ to V+/2
VIN(diff) = 100 mV
2 50
mV from either rail
Temperature extremes 50
Output Swing Low RL = 100 kΩ to V+/2
VIN(diff) = −100 mV
2 50
Temperature extremes 50
IO Output Current(3) Sourcing, VO to V
VIN(diff) = 100 mV
1
3 mA
Temperature extremes 0.5
Sinking, VO to V+
VIN(diff) = −100 mV
1
3
Temperature extremes 0.5
IS Supply Current VCM = 0.3 V 345 400
nA
Temperature extremes 580
VCM = 1.5 V 472 600
Temperature extremes 850
(1) values apply only for factory testing conditions at the temperature indicated. Factory testing conditions result in very limited self-heating of the device such that TJ = TA. No guarantee of parametric performance is indicated in the electrical tables under conditions of internal self-heating where TJ TA. indicate junction temperature limits beyond which the device may be permanently degraded, either mechanically or electrically.
(2) The offset voltage average drift is determined by dividing the change in VOS at the temperature extremes by the total temperature change.
(3) The short circuit test is a momentary open-loop test.

6.6 1.8-V AC Electrical Characteristics

Unless otherwise specified, all limits for TA = 25°C, V+ = 1.8 V, V = 0 V, VCM = VO = V+/2, and RL > 1 MΩ.(1)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
GBW Gain-Bandwidth Product CL = 20 pF, RL = 100 kΩ 6.1 kHz
SR Slew Rate AV = +1,
VIN = 0V to 1.8V
Falling Edge 2.9 V/ms
Rising Edge 2.3
θ m Phase Margin CL = 20 pF, RL = 100 kΩ 72 deg
Gm Gain Margin CL = 20 pF, RL = 100 kΩ 19 dB
en Input-Referred Voltage Noise Density f = 100 Hz 265 nV/√Hz
Input-Referred Voltage Noise 0.1 Hz to 10 Hz 24 μVPP
In Input-Referred Current Noise f = 100 Hz 100 fA/√Hz
(1) values apply only for factory testing conditions at the temperature indicated. Factory testing conditions result in very limited self-heating of the device such that TJ = TA. No guarantee of parametric performance is indicated in the electrical tables under conditions of internal self-heating where TJ TA. indicate junction temperature limits beyond which the device may be permanently degraded, either mechanically or electrically.

6.7 3.3-V DC Electrical Characteristics

Unless otherwise specified, all limits for TA = 25°C, V+ = 3.3 V, V = 0 V, VCM = VO = V+/2, and RL > 1 MΩ.(1)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
VOS Input Offset Voltage VCM = 0.3 V –1 0.1 1 mV
Temperature extremes –1.23 1.23
VCM = 3 V –1 0.1 1
Temperature extremes –1.23 1.23
TCVOS Input Offset Voltage Drift(2) ±0.4 μV/°C
Temperature extremes –3 3
IBIAS Input Bias Current –1 0.01 1 pA
Temperature extremes –50 50
IOS Input Offset Current 20 fA
CMRR Common Mode Rejection Ratio 0 V ≤ VCM ≤ 3.3 V 72
97 dB
Temperature extremes 70
0 V ≤ VCM ≤ 2.2 V 78
106
Temperature extremes 75
2.7 V ≤ VCM ≤ 3.3 V 77
121
Temperature extremes 76
PSRR Power Supply Rejection Ratio 1.6 V ≤ V+ ≤ 5.5 V
VCM = 0.3 V
85
109 dB
Temperature extremes 76
CMVR Common Mode Voltage Range CMRR ≥ 72 dB
CMRR ≥ 70 dB
−0.1
3.4
V
Temperature extremes 0 3.3
AVOL Large Signal Voltage Gain VO = 0.5 V to 2.8 V
RL = 100 kΩ to V+/2
82
120 dB
Temperature extremes 76
VO Output Swing High RL = 100 kΩ to V+/2
VIN(diff) = 100 mV
3 50
mV
from either rail
Temperature extremes 50
Output Swing Low RL = 100 kΩ to V+/2
VIN(diff) = −100 mV
2 50
Temperature extremes 50
IO Output Current(3) Sourcing, VO to V
VIN(diff) = 100 mV
5
11 mA
Temperature extremes 4
Sinking, VO to V+
VIN(diff) = −100 mV
5
12
Temperature extremes 4
IS Supply Current VCM = 0.3 V 346 400
nA
Temperature extremes 600
VCM = 3 V 471 600
Temperature extremes 860
(1) values apply only for factory testing conditions at the temperature indicated. Factory testing conditions result in very limited self-heating of the device such that TJ = TA. No guarantee of parametric performance is indicated in the electrical tables under conditions of internal self-heating where TJ TA. indicate junction temperature limits beyond which the device may be permanently degraded, either mechanically or electrically.
(2) The offset voltage average drift is determined by dividing the change in VOS at the temperature extremes by the total temperature change.

6.8 3.3-V AC Electrical Characteristics

Unless otherwise is specified, all limits for TA = 25°C, V+ = 3.3 V, V = 0 V, VCM = VO = V+/2, and RL > 1 MΩ.(1)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
GBW Gain-Bandwidth Product CL = 20 pF, RL = 100 kΩ 6.2 kHz
SR Slew Rate AV = +1,
VIN = 0V to 3.3V
Falling Edge 2.9 V/ms
Rising Edge 2.5
θ m Phase Margin CL = 20 pF, RL = 10 kΩ 73 deg
Gm Gain Margin CL = 20 pF, RL = 10 kΩ 19 dB
en Input-Referred Voltage Noise Density f = 100 Hz 259 nV/√Hz
Input-Referred Voltage Noise 0.1 Hz to 10 Hz 22 μVPP
In Input-Referred Current Noise f = 100 Hz 100 fA/√Hz
(1) values apply only for factory testing conditions at the temperature indicated. Factory testing conditions result in very limited self-heating of the device such that TJ = TA. No guarantee of parametric performance is indicated in the electrical tables under conditions of internal self-heating where TJ TA. indicate junction temperature limits beyond which the device may be permanently degraded, either mechanically or electrically.

6.9 5-V DC Electrical Characteristics

Unless otherwise specified, all limits for TA = 25°C, V+ = 5 V, V = 0 V, VCM = VO = V+/2, and RL > 1 MΩ.(1)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
VOS Input Offset Voltage VCM = 0.3 V 0.1 ±1
mV
Temperature extremes –1.23 1.23
VCM = 4.7 V 0.1 ±1
Temperature extremes –1.23 1.23
TCVOS Input Offset Voltage Drift(2) ±0.4 μV/°C
Temperature extremes –3.5 3.5
IBIAS Input Bias Current 0.04 ±1
pA
Temperature extremes –50 50
IOS Input Offset Current 60 fA
CMRR Common Mode Rejection Ratio 0 V ≤ VCM ≤ 5.0 V 75
102 dB
Temperature extremes 74
0 V ≤ VCM ≤ 3.9 V 84
108
Temperature extremes 80
77
115
Temperature extremes 76
PSRR Power Supply Rejection Ratio 1.6 V ≤ V+ ≤ 5.5 V
VCM = 0.3 V
85
109 dB
Temperature extremes 76
CMVR Common Mode Voltage Range CMRR ≥ 75 dB
CMRR ≥ 74 dB
−0.1
5.1
V
Temperature extremes 0 5
AVOL Large Signal Voltage Gain VO = 0.5 V to 4.5 V
RL = 100 kΩ to V+/2
84
132 dB
Temperature extremes 76
VO Output Swing High RL = 100 kΩ to V+/2
VIN(diff) = 100 mV
3 50
mV from either rail
Temperature extremes 50
Output Swing Low RL = 100 kΩ to V+/2
VIN (diff) = −100 mV
3 50
Temperature extremes 50
IO Output Current Sourcing, VO to V
VIN(diff) = 100 mV
15
23 mA
Temperature extremes 8
Sinking, VO to V+
VIN(diff) = −100 mV
15
22
Temperature extremes 8
IS Supply Current VCM = 0.3 V 351 400
nA
Temperature extremes 620
VCM = 4.7 V 475 600
Temperature extremes 870
(1) values apply only for factory testing conditions at the temperature indicated. Factory testing conditions result in very limited self-heating of the device such that TJ = TA. No guarantee of parametric performance is indicated in the electrical tables under conditions of internal self-heating where TJ TA. indicate junction temperature limits beyond which the device may be permanently degraded, either mechanically or electrically.
(2) The offset voltage average drift is determined by dividing the change in VOS at the temperature extremes by the total temperature change.
(3) The short circuit test is a momentary open-loop test.

6.10 5-V AC Electrical Characteristics(1)

Unless otherwise specified, all limits for TA = 25°C, V+ = 5 V, V = 0 V, VCM = VO = V+/2, and RL > 1 MΩ.
PARAMETER TEST CONDITIONS MIN
(2)
TYP
(3)
MAX
(2)
UNIT
GBW Gain-Bandwidth Product CL = 20 pF, RL = 100 kΩ 6.2 kHz
SR Slew Rate AV = +1,
VIN = 0 V to 5 V
Falling Edge 1.1
2.7 V/ms
Temperature extremes 1.2
Rising Edge 1.1
2.4
Temperature extremes 1.2
θ m Phase Margin CL = 20 pF, RL = 100 kΩ 73 deg
Gm Gain Margin CL = 20 pF, RL = 100 kΩ 20 dB
en Input-Referred Voltage Noise Density f = 100 Hz 255 nV/Hz
Input-Referred Voltage Noise 0.1 Hz to 10 Hz 22 μVPP
In Input-Referred Current Noise f = 100 Hz 100 fA/Hz
EMIRR EMI Rejection Ratio, IN+ and IN−(4) VRF_PEAK = 100 mVP (−20 dBP),
f = 400 MHz
121 dB
VRF_PEAK = 100 mVP (−20 dBP),
f = 900 MHz
121
VRF_PEAK = 100 mVP (−20 dBP),
f = 1800 MHz
124
VRF_PEAK = 100 mVP (−20 dBP),
f = 2400 MHz
142
(1) values apply only for factory testing conditions at the temperature indicated. Factory testing conditions result in very limited self-heating of the device such that TJ = TA. No guarantee of parametric performance is indicated in the electrical tables under conditions of internal self-heating where TJ TA. indicate junction temperature limits beyond which the device may be permanently degraded, either mechanically or electrically.
(2) All limits are guaranteed by testing, statistical analysis or design.
(3) Typical values represent the most likely parametric norm at the time of characterization. Actual typical values may vary over time and will also depend on the application and configuration. The typical values are not tested and are not guaranteed on shipped production material.
(4) The EMI Rejection Ratio is defined as EMIRR = 20log (VRF_PEAK/ΔVOS).

6.11 Typical Characteristics

At TJ = 25°C, unless otherwise specified.
30054504.gifFigure 1. Supply Current vs. Supply Voltage
30054573.gifFigure 3. Offset Voltage Distribution
30054575.gifFigure 5. Offset Voltage Distribution
30054568.gifFigure 7. Offset Voltage Distribution
30054506.gifFigure 9. Input Offset Voltage vs. Input Common Mode
30054507.gifFigure 11. Input Offset Voltage vs. Input Common Mode
30054538.gifFigure 13. Input Offset Voltage vs. Supply Voltage
30054540.gifFigure 15. Input Offset Voltage vs. Output Voltage
30054542.gifFigure 17. Input Offset Voltage vs. Sourcing Current
30054544.gifFigure 19. Input Offset Voltage vs. Sourcing Current
30054546.gifFigure 21. Input Offset Voltage vs. Sinking Current
30054508.gifFigure 23. Sourcing Current vs. Output Voltage
30054510.gifFigure 25. Sourcing Current vs. Output Voltage
30054552.gifFigure 27. Sourcing Current vs. Output Voltage
30054548.gifFigure 29. Sourcing Current vs. Supply Voltage
30054550.gifFigure 31. Output Swing High vs. Supply Voltage
30054514.gifFigure 33. Input Bias Current vs. Common Mode Voltage
30054516.gifFigure 35. Input Bias Current vs. Common Mode Voltage
30054565.gifFigure 37. Input Bias Current vs. Common Mode Voltage
30054527.gifFigure 39. PSRR vs. Frequency
30054523.gifFigure 41. Frequency Response vs. Temperature
30054522.gifFigure 43. Frequency Response vs. Temperature
30054521.gifFigure 45. Frequency Response vs. RL
30054517.gifFigure 47. Frequency Response vs. CL
30054513.gifFigure 49. Frequency Response vs. CL
30054526.gifFigure 51. Voltage Noise vs. Frequency
30054562.gifFigure 53. 0.1 to 10 Hz Time Domain Voltage Noise
30054531.gifFigure 55. Small Signal Pulse Response
30054532.gifFigure 57. Large Signal Pulse Response
30054534.gif
Figure 59. Overload Recovery Waveform
30054535.gifFigure 2. Supply Current vs. Supply Voltage
30054574.gifFigure 4. TcvOS Distribution
30054567.gifFigure 6. TcvOS Distribution
30054569.gifFigure 8. TcvOS Distribution
30054505.gifFigure 10. Input Offset Voltage vs. Input Common Mode
30054537.gifFigure 12. Input Offset Voltage vs. Supply Voltage
30054539.gifFigure 14. Input Offset Voltage vs. Output Voltage
30054541.gifFigure 16. Input Offset Voltage vs. Output Voltage
30054543.gifFigure 18. Input Offset Voltage vs. Sourcing Current
30054545.gifFigure 20. Input Offset Voltage vs. Sinking Current
30054547.gifFigure 22. Input Offset Voltage vs. Sinking Current
30054509.gifFigure 24. Sinking Current vs. Output Voltage
30054511.gifFigure 26. Sinking Current vs. Output Voltage
30054553.gifFigure 28. Sinking Current vs. Output Voltage
30054549.gifFigure 30. Sinking Current vs. Supply Voltage
30054551.gifFigure 32. Output Swing Low vs. Supply Voltage
30054515.gifFigure 34. Input Bias Current vs. Common Mode Voltage
30054564.gifFigure 36. Input Bias Current vs. Common Mode Voltage
30054566.gifFigure 38. Input Bias Current vs. Common Mode Voltage
30054560.gifFigure 40. CMRR vs. Frequency
30054524.gifFigure 42. Frequency Response vs. Temperature
30054520.gifFigure 44. Frequency Response vs. RL
30054519.gifFigure 46. Frequency Response vs. RL
30054518.gifFigure 48. Frequency Response vs. CL
30054536.gifFigure 50. Slew Rate vs. Supply Voltage
30054561.gifFigure 52. 0.1 to 10 Hz Time Domain Voltage Noise
30054563.gifFigure 54. 0.1 to 10 Hz Time Domain Voltage Noise
30054530.gifFigure 56. Small Signal Pulse Response
30054533.gifFigure 58. Large Signal Pulse Response
30054572.gifFigure 60. EMIRR vs. Frequency