SBOS925A December   2020  – January 2021 OPA391

PRODUCTION DATA  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Pin Configuration and Functions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Typical Characteristics
  7. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 Low Input Bias Current
      2. 7.3.2 Input Differential Voltage
      3. 7.3.3 Capacitive Load Drive
      4. 7.3.4 EMI Rejection
    4. 7.4 Device Functional Modes
  8. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Applications
      1. 8.2.1 Three-Terminal CO Gas Sensor
        1. 8.2.1.1 Design Requirements
        2. 8.2.1.2 Detailed Design Procedure
        3. 8.2.1.3 Application Curve
      2. 8.2.2 4-mA to 20-mA Loop Design
        1. 8.2.2.1 Application Curve
  9. Power Supply Recommendations
  10. 10Layout
    1. 10.1 Layout Guidelines
    2. 10.2 Layout Example
  11. 11Device and Documentation Support
    1. 11.1 Device Support
      1. 11.1.1 Development Support
        1. 11.1.1.1 TINA-TI™ Simulation Software (Free Download)
    2. 11.2 Documentation Support
      1. 11.2.1 Related Documentation
    3. 11.3 Receiving Notification of Documentation Updates
    4. 11.4 Support Resources
    5. 11.5 Trademarks
    6. 11.6 Electrostatic Discharge Caution
    7. 11.7 Glossary
  12. 12Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Electrical Characteristics

at VS = 1.7 V to 5.5 V, TA = 25°C, and VCM = VS / 2 (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
OFFSET VOLTAGE
VOS Input offset voltage V= 5.0 V ±10 ±45 µV
VCM = (V+) – 0.3,  VS = 5.0 ±60 ±750
VCM = (V–) – 0.1 ±15 ±80
TA = –40°C to +125°C(1) ±600
dVOS/dT Input offset voltage drift TA = 0°C to 85°C(1) ±1 ±5 µV/°C
TA = –40°C to +125°C(1) ±1.2 ±6
PSRR Power supply rejection ratio VCM = (V–) – 0.1 V 40 µV/V
INPUT BIAS CURRENT
IB Input bias current TA = 25°C(1) ±0.01 0.8 pA
TA = 0°C to 85°C(1) 5
TA = –40°C to +125°C(1) 30
IOS Input offset current TA = 25°C(1) ±0.01 0.8 pA
TA = 0°C to 85°C(1) 5
TA = –40°C to +125°C(1) 30
NOISE
Input voltage noise f = 0.1 Hz to 10 Hz, VCM =  V 0.91 µVRMS
6.0 µVPP
en Input voltage noise density f = 10 Hz 130 nV/√Hz
f = 1 kHz 60
f = 10 kHz 55
in Input current noise density f = 1 kHz 30 fA/√Hz
INPUT VOLTAGE
VCM Common-mode voltage TA = –40°C to +125°C(1) (V–) – 0.1 (V+) + 0.1 V
CMRR Common-mode rejection ratio (V–) – 0.1 ≤ VCM ≤ (V+) – 1.5 V 89 100 dB
(V–) – 0.1 ≤ VCM ≤ (V+) – 1.5 V, VS = 5.5 V 100 121
TA = –40°C to +125°C(1) 90 100
(V+) – 0.6 ≤ VCM ≤ (V+) + 0.1 V 69
INPUT IMPEDANCE
Zid Differential input impedance 0.1 || 1 GΩ || pF
Zic Common-mode input impedance 1 || 1 TΩ || pF
OPEN-LOOP GAIN
AOL Open-loop voltage gain VS = 5.5 V (V–) + 0.1 V < VO < (V+) – 0.1 V,
VCM = (V–) –100 mV,
RL = 10 kΩ
100 121 dB
(V–) + 0.45 V < VO < (V+) – 0.45 V,
VCM = (V–) –100 mV,
RL = 2 kΩ
100 121
VS = 1.7 V (V–) + 0.1 V < VO < (V+) – 0.1 V,
VCM = (V+) – 1.5 V,
R= 10 kΩ
90 113
(V–) + 0.45 V < VO < (V+) – 0.45 V,
VCM = (V+) – 1.5 V,
RL = 2 kΩ
90 107
FREQUENCY RESPONSE
UGB Unity-gain bandwidth G = 1 IOUT = 0 µA, RL = 10 kΩ 450 kHz
IOUT = 0 µA, RL = 50 kΩ 0.85 MHz
IOUT = 100 µA, RL = 10 kΩ 0.75
GBW Gain-bandwidth product 1 MHz
SR Slew rate G = –1, 4-V step 1 V/µs
tS Settling time To 0.1%, VS = 5.5, G = 1, 1-V step 8 µs
tOR Overload recovery time VIN x G = VS 15 µs
OUTPUT
VO Voltage output swing from rail No load 3 mV
R= 10 kΩ 10
RL = 2 kΩ 40
TA = –40°C to +125°C, both rails, RL = 10 kΩ(1) 10
ISC Short-circuit current VS = 5.5 V 60 mA
ZO Open-loop output impedance f = 1 MHz, no load 500 Ω
POWER SUPPLY
IQ Quiescent current per amplifier VCM = (V+) – 1.5 V 24 30 µA
TA = –40°C to +125°C(1) 32
Specification established from device population bench system measurements across multiple lots.