SBOS982G June   2020  – July 2022 OPA2863 , OPA4863 , OPA863

PRODMIX  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Device Comparison Table
  6. Pin Configuration and Functions
  7. Specifications
    1. 7.1  Absolute Maximum Ratings
    2. 7.2  ESD Ratings
    3. 7.3  Recommended Operating Conditions
    4. 7.4  Thermal Information: OPA863
    5. 7.5  Thermal Information: OPA2863
    6. 7.6  Thermal Information: OPA4863
    7. 7.7  Electrical Characteristics: VS = 10 V
    8. 7.8  Electrical Characteristics: VS = 3 V
    9. 7.9  Typical Characteristics: VS = 10 V
    10. 7.10 Typical Characteristics: VS = 3 V
    11. 7.11 Typical Characteristics: VS = 3 V to 10 V
  8. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1 Input Stage
      2. 8.3.2 Output Stage
        1. 8.3.2.1 Overload Power Limit
      3. 8.3.3 ESD Protection
    4. 8.4 Device Functional Modes
      1. 8.4.1 Power-Down Mode
  9. Application and Implementation
    1. 9.1 Application Information
    2. 9.2 Low-Side Current Sensing
      1. 9.2.1 Design Requirements
    3. 9.3 Front-End Gain and Filtering
    4. 9.4 Low-Power SAR ADC Driver and Reference Buffer
    5. 9.5 Variable Reference Generator Using MDAC
    6. 9.6 Clamp-On Ultrasonic Flow Meter
  10. 10Power Supply Recommendations
  11. 11Layout
    1. 11.1 Layout Guidelines
      1. 11.1.1 Thermal Considerations
    2. 11.2 Layout Example
  12. 12Device and Documentation Support
    1. 12.1 Documentation Support
      1. 12.1.1 Related Documentation
    2. 12.2 Receiving Notification of Documentation Updates
    3. 12.3 Support Resources
    4. 12.4 Trademarks
    5. 12.5 Electrostatic Discharge Caution
    6. 12.6 Glossary
  13. 13Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Thermal Considerations

The OPAx863 does not require heat sinking or airflow in most applications. The maximum allowed junction temperature sets the maximum allowed internal power dissipation. Do not allow the maximum junction temperature to exceed 150°C.

Operating junction temperature (TJ) is given by,

Equation 4. TJ = TA + PD x RƟJA
where,
  • TA is the ambient temperature
  • PD is the total power dissipation internal to the amplifier
  • RƟJA is the junction-to-ambient thermal resistance
The total power dissipation PD = PDQ + PDL
where, PDQ = (VS+ ‐ VS-) x IQ, is the power dissipation due to amplifier's quiescent current
and PDL(max) = VS2 / (4 × RL), is the internal power dissipation due to output load current

As a worst-case example, compute the maximum TJ using an OPA2863-DGK (VSSOP package) configured as a unity gain buffer, operating on ±6-V supplies at an ambient temperature of 25°C and driving a grounded 500-Ω load.

Equation 5. PD = 12 V × 2 mA + 62 /(4 × 500 Ω) = 42 mW

Maximum TJ = 25°C + (0.042 W × 180.3°C/W) = 33°C, which is well below the maximum allowed junction temperature of 150°C.