SLLSEO9C March   2016  – August 2019 SN65DPHY440SS , SN75DPHY440SS

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
    1.     Device Images
      1.      Simplified Schematic
      2.      Typical Application
  4. Revision History
  5. Pin Configuration and Functions
    1.     Pin Functions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics, Power Supply
    6. 6.6 Electrical Characteristics
    7. 6.7 Timing Requirements
    8. 6.8 Switching Characteristics
    9. 6.9 Typical Characteristics
  7. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 HS Receive Equalization
      2. 7.3.2 HS TX Edge Rate Control
      3. 7.3.3 TX Voltage Swing and Pre-Emphasis Control
      4. 7.3.4 Dynamic De-skew
    4. 7.4 Device Functional Modes
      1. 7.4.1 Shutdown Mode
      2. 7.4.2 LP Mode
      3. 7.4.3 ULPS Mode
      4. 7.4.4 HS Mode
    5. 7.5 Register Maps
      1. 7.5.1  BIT Access Tag Conventions
      2. 7.5.2  Standard CSR Registers (address = 0x000 - 0x07)
        1. Table 6. Standard CSR Registers (0x000 - 0x07)
      3. 7.5.3  Standard CSR Register (address = 0x08)
        1. Table 7. Standard CSR Register (0x08)
      4. 7.5.4  Standard CSR Register (address = 0x09)
        1. Table 8. Standard CSR Register (0x09)
      5. 7.5.5  Standard CSR Register (address = 0x0A)
        1. Table 9. Standard CSR Register (0x0A)
      6. 7.5.6  Standard CSR Register (address = 0x0B)
        1. Table 10. Standard CSR Register (0x0B)
      7. 7.5.7  Standard CSR Register (address = 0x0D)
        1. Table 11. Standard CSR Register (0x0D)
      8. 7.5.8  Standard CSR Register (address = 0x0E)
        1. Table 12. Standard CSR Register (0x0E)
      9. 7.5.9  Standard CSR Register (address = 0x10) [reset = 0xFF]
        1. Table 13. Standard CSR Register (0x10)
      10. 7.5.10 Standard CSR Register (address = 0x11) [reset = 0xFF]
        1. Table 14. Standard CSR Register (0x11)
  8. Application and Implementation
    1. 8.1 Application Information,
    2. 8.2 Typical Application, CSI-2 Implementations
      1. 8.2.1 Design Requirements
      2. 8.2.2 Detailed Design Procedure
        1. 8.2.2.1 Reset Implementation
      3. 8.2.3 Application Curves
  9. Power Supply Recommendations
  10. 10Layout
    1. 10.1 Layout Guidelines
    2. 10.2 Layout Example
  11. 11Device and Documentation Support
    1. 11.1 Related Links
    2. 11.2 Community Resources
    3. 11.3 Trademarks
    4. 11.4 Electrostatic Discharge Caution
    5. 11.5 Glossary
  12. 12Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Electrical Characteristics

over operating free-air temperature range (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
Standard IO (RSTN, ERC, EQ, CFG[1:0])
VIL Low-level control signal input voltage 0.2 x VCC V
VIM Mid-level control signal input voltage VCC / 2 V
VIH High-level control signal input voltage 0.8 x VCC V
VF Floating Voltage VIN = High Impedance VCC / 2 V
VOL Low level output voltage (open-drain). ERC (SDA) only At IOL max. 0.2 x VCC V
IOL Low Level Output Current 3 mA
IIH High level input current ±36 µA
IIL Low level input current ±36 µA
RPU Internal pull-up resistance 100
RPD Internal pull-down resistance 100
R(RSTN) RSTN control input pullup resistor 300
MIPI Input Leakage (DA1P/N, DA2P/N, DA3P/N, DACP/N)
Ilkg Input failsafe leakage current VCC = 0 V; VDD = 0 V; MIPI DPHY pulled up to 1.35 V –65 65 µAV
MIPI DPHY HS RECIEVER INTERFACE (DA0P/N, DA1P/N, DA2P/N, DA3P/N, DACP/N)
V(CM-RX_DC) Differential Input Common-mode voltage HS Receive mode V(CM-RX) = (VA x P + VA x N)/2 70 330 mV
| VID | HS Receiver input differential voltage | VID | = |VA x P – VA x N| 70 mV
VIH(HS) Single-ended input high voltage 460 mV
VIL(HS) Single-ended input low voltage –40 mV
R(DIFF-HS) Differential input impedance 80 100 125 Ω
V(RXEQ0) Rx EQ gain when EQ/SCL pin ≤ VIL 0 dB
V(RXEQ1) Rx EQ gain when EQ/SCL pin = VIM At 750 MHz 2.5 dB
V(RXEQ2) Rx EQ gain when EQ/SCL pin ≥ VIH At 750 MHz 5 dB
MIPI DPHY LP Receiver Interface (DA0P/N, DA1P/N, DA2P/N, DA3P/N, DACP/N, DB0P/N)
V(LPIH) LP Logic 1 Input Voltage 880 mV
V(LPIL) LP Logic 0 Input voltage 550 mV
V(HYST) LP Input Hysteresis 25 mV
MIPI DPHY HS Transmitter Interface (DB0P/N, DB1P/N, DB2P/N, DB3P/N, DBCP/N)
V(CMTX) HS Transmit static common-mode voltage V(CMTX) = (V(BP) + V(BN)) / 2 150 200 300 mV
|∆V(CMTX) (1,0)| VCMTX mismatch when output is Differential-1 or differential-0. ∆V(CMTX) (1,0) = (V(CMTX) (1) – V(CMTX) (0)) /2 5 mV
|VOD(VD0)| HS Transmit differential voltage for CFG0 = 2’b00 with TX pre-emphasis disabled or for non-transition bit when TX pre-emphasis is enabled. |VOD| = |V(DP) - V(DN)| 140 180 220 mV
|VOD(VD1)| HS Transmit differential voltage for CFG0 = VIM with TX pre-emphasis disabled or for non-transition bit when TX pre-emphasis is enabled. |VOD| = |V(DP) - V(DN)| CFG0 = VIM 160 200 250 mV
|VOD(VD2)| HS Transmit differential voltage for CFG0 = VIH with TX pre-emphasis disabled or for non-transition bit when pre-emphasis is enabled.. |VOD| = |V(DP) - V(DN)| CFG0 ≥ VIH 170 220 270 mV
|∆VOD| VOD mismatch when output is differential-1 or differential-0. ∆VOD = |∆VO(D1)| - |∆VO(D0)| 14 mV
VOH(HS) HS Output high voltage for non-transition bit. CFG0 ≥ VIH HS Pre = 2.5 dB 430 mV
V(PRE1) Pre-emphasis Level for HSTX_PRE = 2’b00.. Refer to Figure 3 PRE = 20 x LOG (VOD(TBx) / VOD(VDX)) 1.5 dB
V(PRE2) Pre-emphasis level for HSTX_PRE = 2’b1X. Refer to Figure 3 PRE = 20 x LOG (VOD(TBx) / VOD(VDX)) 2.5 dB
MIPI DPHY LP Transmitter Interface (DB0P/N, DB1P/N, DB2P/N, DB3P/N, DBCP/N, DA0P/N)
V(LPOH) LP Output High Level 1.1 1.2 1.3 V
V(LPOL) LP Output Low Level –50 50 mV
VIH(CD) LP Logic 1 contention threshold 450 mV
VIL(CD) LP Logc 0 contention threshold 200 mV
ZO(LP) Output Impedance of LP transmitter 110 Ω