SLASEV8 December   2020 TAS5822M

PRODUCTION DATA  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Pin Configuration and Functions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Timing Requirements
    7. 6.7 Typical Characteristics
      1. 6.7.1 Bridge Tied Load (BTL) Configuration Curves with 1SPW Modulation, Fsw = 768kHz
      2. 6.7.2 Parallel Bridge Tied Load (PBTL) Configuration Curves with 1SPW Modulation, Fsw = 768kHz
    8. 6.8 Parametric Measurement Information
      1. 6.8.1 Power Consumption Summary
  7. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 Power Supplies
      2. 7.3.2 Device Clocking
      3. 7.3.3 Serial Audio Port – Clock Rates
      4. 7.3.4 Clock Halt Auto-recovery
      5. 7.3.5 Sample Rate on the Fly Change
      6. 7.3.6 Serial Audio Port - Data Formats and Bit Depths
      7. 7.3.7 Digital Audio Processing
      8. 7.3.8 Class D Audio Amplifier
        1. 7.3.8.1 Speaker Amplifier Gain Select
    4. 7.4 Device Functional Modes
      1. 7.4.1 Software Control
      2. 7.4.2 Speaker Amplifier Operating Modes
        1. 7.4.2.1 BTL Mode
        2. 7.4.2.2 PBTL Mode
      3. 7.4.3 Minimize EMI with Spread Spectrum
      4. 7.4.4 Minimize EMI with channel to channel phase shift
      5. 7.4.5 Minimize EMI with Multi-Devices PWM Phase Synchronization
      6. 7.4.6 Thermal Foldback
      7. 7.4.7 Device State Control
      8. 7.4.8 Device Modulation
        1. 7.4.8.1 BD Modulation
        2. 7.4.8.2 1SPW Modulation
        3. 7.4.8.3 Hybrid Modulation
    5. 7.5 Programming and Control
      1. 7.5.1 I2 C Serial Communication Bus
      2. 7.5.2 Slave Address
        1. 7.5.2.1 Random Write
        2. 7.5.2.2 Sequential Write
        3. 7.5.2.3 Random Read
        4. 7.5.2.4 Sequential Read
        5. 7.5.2.5 DSP Memory Book, Page and BQ update
        6. 7.5.2.6 Example Use
        7. 7.5.2.7 Checksum
          1. 7.5.2.7.1 Cyclic Redundancy Check (CRC) Checksum
          2. 7.5.2.7.2 Exclusive or (XOR) Checksum
      3. 7.5.3 Control via Software
        1. 7.5.3.1 Startup Procedures
        2. 7.5.3.2 Shutdown Procedures
        3. 7.5.3.3 Protection and Monitoring
          1. 7.5.3.3.1 Over current Shutdown (OCSD)
          2. 7.5.3.3.2 Speaker DC Protection
          3. 7.5.3.3.3 Device Over Temperature Protection
          4. 7.5.3.3.4 Over Voltage Protection
          5. 7.5.3.3.5 Under Voltage Protection
          6. 7.5.3.3.6 Clock Fault
    6. 7.6 Register Maps
      1. 7.6.1 CONTROL PORT Registers
  8. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Applications
      1. 8.2.1 2.0 (Stereo BTL) System
      2. 8.2.2 MONO (PBTL) System
        1. 8.2.2.1 Design Requirements
        2. 8.2.2.2 Detailed Design Procedure
          1. 8.2.2.2.1 Bootstrap Capacitors
          2. 8.2.2.2.2 Inductor Selections
          3. 8.2.2.2.3 Power Supply Decoupling
          4. 8.2.2.2.4 Output EMI Filtering
        3. 8.2.2.3 Application Performance Plots
  9. Power Supply Recommendations
    1. 9.1 DVDD Supply
    2. 9.2 PVDD Supply
  10. 10Layout
    1. 10.1 Layout Guidelines
      1. 10.1.1 General Guidelines for Audio Amplifiers
      2. 10.1.2 Importance of PVDD Bypass Capacitor Placement on PVDD Network
      3. 10.1.3 Optimizing Thermal Performance
        1. 10.1.3.1 Device, Copper, and Component Layout
        2. 10.1.3.2 Stencil Pattern
          1. 10.1.3.2.1 PCB footprint and Via Arrangement
          2. 10.1.3.2.2 Solder Stencil
    2. 10.2 Layout Example
  11. 11Device and Documentation Support
    1. 11.1 Support Resources
    2. 11.2 Trademarks
    3. 11.3 Electrostatic Discharge Caution
    4. 11.4 Glossary
  12. 12Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

DVDD Supply

The DVDD supply that is required from the system is used to power several portions of the device. As shown in Figure 9-1, it provides power to the DVDD pin. Proper connection, routing and decoupling techniques are highlighted in the Section 8 section and the Section 10.2 section and must be followed as closely as possible for proper operation and performance.

Some portions of the device also require a separate power supply that is a lower voltage than the DVDD supply. To simplify the power supply requirements for the system, the TAS5822M device includes an integrated low dropout (LDO) linear regulator to create this supply. This linear regulator is internally connected to the DVDD supply and its output is presented on the VR_REG pin, providing a connection point for an external bypass capacitor. It is important to note that the linear regulator integrated in the device has only been designed to support the current requirements of the internal circuitry, and should not be used to power any additional external circuity. Additional loading on this pin could cause the voltage to sag, negatively affecting the performance and operation of the device.