SCPS237 June   2018 TCA9517-Q1

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
    1.     Device Images
      1.      Simplified Schematic
  4. Revision History
  5. Description (continued)
  6. Pin Configuration and Functions
    1.     Pin Functions
  7. Specifications
    1. 7.1 Absolute Maximum Ratings
    2. 7.2 ESD Ratings
    3. 7.3 Recommended Operating Conditions
    4. 7.4 Thermal Information
    5. 7.5 Electrical Characteristics
    6. 7.6 Timing Requirements
    7. 7.7 I2C Interface Switching Characteristics
    8. 7.8 Typical Characteristics
  8. Parameter Measurement Information
  9. Detailed Description
    1. 9.1 Overview
    2. 9.2 Functional Block Diagram
    3. 9.3 Feature Description
      1. 9.3.1 Two-Channel Bidirectional Buffer
      2. 9.3.2 Active-High Repeater-Enable Input
      3. 9.3.3 VOL B-Side Offset Voltage
      4. 9.3.4 Standard Mode and Fast Mode Support
      5. 9.3.5 Clock Stretching Support
    4. 9.4 Device Functional Modes
  10. 10Application and Implementation
    1. 10.1 Application Information
    2. 10.2 Typical Application
      1. 10.2.1 Design Requirements
      2. 10.2.2 Detailed Design Procedure
        1. 10.2.2.1 Clock Stretching Support
        2. 10.2.2.2 VILC and Pullup Resistor Sizing
      3. 10.2.3 Application Curve
  11. 11Power Supply Recommendations
  12. 12Layout
    1. 12.1 Layout Guidelines
    2. 12.2 Layout Example
  13. 13Device and Documentation Support
    1. 13.1 Device Support
    2. 13.2 Receiving Notification of Documentation Updates
    3. 13.3 Community Resources
    4. 13.4 Trademarks
    5. 13.5 Electrostatic Discharge Caution
    6. 13.6 Glossary
  14. 14Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Description (continued)

The buffer design on the B-side prevents its use in series with devices that use static voltage offset. The devices do not recognize buffered low signals as a valid low, and do not propagate it as a buffered low again.

The B-side drivers operate from 2.7 V to 5.25 V. The output low level for this internal buffer is approximately 0.5 V. The input voltage must be more than 70 mV below the output low level when the output internally is driven low. The higher-voltage low signal is called a buffered low. When the B-side I/O is driven low internally, the low is not recognized as a low by the input. This feature prevents a lockup condition from occurring when the input low condition is released.

The A-side drivers operate from 0.9 V to 5.25 V, and drive more current. They do not require the buffered low feature (or the static offset voltage). A low signal on the B-side translates to a nearly 0 V low on the A-side. This accommodates smaller voltage swings of lower-voltage logic. The output pulldown on the A-side drives a hard low. The input level is set at 0.3 × VCCA to accommodate the need for a lower low level in systems where the low-voltage-side supply voltage is as low as 0.9 V.

The A-side of two or more TCA9517-Q1 devices can be connected together. This allows many topographies (See Figure 8 and Figure 9 ) with the A-side as the common bus. The A-side can be connected directly to any other buffer with static- or dynamic-offset voltage. Multiple TCA9517-Q1 devices can be connected in series, A-side to B-side, with no buildup in offset voltage, and with only time-of-flight delays to consider. The TCA9517-Q1 cannot be connected B-side to B-side, because of the buffered low voltage from the B-side. The B-side cannot be connected to a device with rise time accelerators.

VCCA is only used to provide the 0.3 × VCCA reference to the A-side input comparators and for the power-good-detect circuit. The TCA9517-Q1 logic and all I/Os are powered by the VCCB pin.

As with the standard I2C system, pullup resistors are required to provide the logic-high levels on the buffered bus. The TCA9517-Q1 has standard open-drain configuration of the I2C bus. The size of these pullup resistors depends on the system, but each side of the repeater must have a pullup resistor. The device is designed to work with Standard mode and Fast mode I2C devices in addition to SMBus devices. Standard mode I2C devices only specify 3 mA in a generic I2C system, where Standard mode devices and multiple masters are possible. Higher termination currents can be used in some cases.