SCPS201E August   2009  – May 2022 TCA9535

PRODUCTION DATA  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Pin Configuration and Functions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 I2C Interface Timing Requirements
    7. 6.7 Switching Characteristics
    8. 6.8 Typical Characteristics
  7. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 5-V Tolerant I/O Ports
      2. 7.3.2 Hardware Address Pins
      3. 7.3.3 Interrupt ( INT) Output
    4. 7.4 Device Functional Modes
      1. 7.4.1 Power-On Reset (POR)
      2. 7.4.2 Powered-Up
    5. 7.5 Programming
      1. 7.5.1 I2C Interface
        1. 7.5.1.1 Bus Transactions
          1. 7.5.1.1.1 Writes
          2. 7.5.1.1.2 Reads
      2. 7.5.2 Device Address
      3. 7.5.3 Control Register and Command Byte
    6. 7.6 Register Maps
      1. 7.6.1 Register Descriptions
  8. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Application
      1. 8.2.1 Design Requirements
        1. 8.2.1.1 Calculating Junction Temperature and Power Dissipation
        2. 8.2.1.2 Minimizing ICC When I/O is Used to Control LED
      2. 8.2.2 Detailed Design Procedure
      3. 8.2.3 Application Curves
  9. Power Supply Recommendations
  10. 10Layout
    1. 10.1 Layout Guidelines
    2. 10.2 Layout Example
  11. 11Device and Documentation Support
    1. 11.1 Documentation Support
      1. 11.1.1 Related Documentation
    2. 11.2 Receiving Notification of Documentation Updates
    3. 11.3 Support Resources
    4. 11.4 Trademarks
    5. 11.5 Electrostatic Discharge Caution
    6. 11.6 Glossary
  12. 12Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Minimizing ICC When I/O is Used to Control LED

When an I/O is used to control an LED, normally it is connected to VCC through a resistor as shown in Figure 8-1. Because the LED acts as a diode, when the LED is off, the I/O VIN is about 1.2 V less than VCC. The ΔICC parameter in the Electrical Characteristics table shows how ICC increases as VIN becomes lower than VCC. For battery-powered applications, it is essential that the voltage of I/O pins is greater than or equal to VCC when the LED is off to minimize current consumption.

Figure 8-2 shows a high-value resistor in parallel with the LED. Figure 8-3 shows VCC less than the LED supply voltage by at least 1.2 V. Both of these methods maintain the I/O VIN at or above VCC and prevent additional supply current consumption when the LED is off.

GUID-5B91B45E-8CA2-4F29-BB78-F22B14EDA12B-low.gifFigure 8-2 High-Value Resistor in Parallel With LED
GUID-D9C388E5-07C9-4AA6-9BD8-82F09BA228B4-low.gifFigure 8-3 Device Supplied by Lower Voltage