SLOS078L November   1978  – May 2015 TL061 , TL061A , TL061B , TL062 , TL062A , TL062B , TL064 , TL064A , TL064B

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Pin Configuration and Functions
  6. Specifications
    1. 6.1  Absolute Maximum Ratings
    2. 6.2  ESD Ratings
    3. 6.3  Recommended Operating Conditions
    4. 6.4  Thermal Information - 8 Pins
    5. 6.5  Thermal Information - 14 Pins
    6. 6.6  Thermal Information - 20 Pins
    7. 6.7  Electrical Characteristics for TL06xC and TL06xxC
    8. 6.8  Electrical Characteristics for TL06xxC and TL06xI
    9. 6.9  Electrical Characteristics for TL06xM and TL064M
    10. 6.10 Operating Characteristics
    11. 6.11 Typical Characteristics
  7. Parameter Measurement Information
  8. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1 Common-Mode Rejection Ratio
      2. 8.3.2 Slew Rate
    4. 8.4 Device Functional Modes
  9. Applications and Implementation
    1. 9.1 Application Information
    2. 9.2 Typical Applications
      1. 9.2.1 Inverting Amplifier Application
        1. 9.2.1.1 Design Requirements
        2. 9.2.1.2 Detailed Design Procedure
        3. 9.2.1.3 Application Curve
    3. 9.3 System Examples
      1. 9.3.1 General Applications
  10. 10Power Supply Recommendations
  11. 11Layout
    1. 11.1 Layout Guidelines
    2. 11.2 Layout Examples
  12. 12Device and Documentation Support
    1. 12.1 Documentation Support
      1. 12.1.1 Related Documentation
    2. 12.2 Related Links
    3. 12.3 Community Resources
    4. 12.4 Trademarks
    5. 12.5 Electrostatic Discharge Caution
    6. 12.6 Glossary
  13. 13Mechanical, Packaging, and Orderable Information

Package Options

Refer to the PDF data sheet for device specific package drawings

Mechanical Data (Package|Pins)
  • P|8
Thermal pad, mechanical data (Package|Pins)
Orderable Information

6 Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)(1)
MIN MAX UNIT
VCC+ Supply voltage(2) 18 V
VCC– –18
VID Differential input voltage(3) ±30 V
VI Input voltage(2)(4) ±15 V
Duration of output short circuit(5) Unlimited
TJ Operating virtual junction temperature 150 °C
Case temperature for 60 seconds FK package 260 °C
Lead temperature 1.6 mm (1/16 inch) from case for 60 seconds J, JG, U, or W package 300 °C
Lead temperature 1.6 mm (1/16 inch) from case for 10 seconds D, N, NS, P, PS, or PW package 260 °C
Tstg Storage temperature –65 150 °C
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
(2) All voltage values, except differential voltages, are with respect to the midpoint between VCC+ and VCC−.
(3) Differential voltages are at IN+, with respect to IN−.
(4) The magnitude of the input voltage must never exceed the magnitude of the supply voltage or 15 V, whichever is less.
(5) The output may be shorted to ground or to either supply. Temperature and/or supply voltages must be limited to ensure that the dissipation rating is not exceeded.

6.2 ESD Ratings

VALUE UNIT
V(ESD) Electrostatic discharge Human body model (HBM), per ANSI/ESDA/JEDEC JS-001(1) 2000 V
Charged-device model (CDM), per JEDEC specification JESD22-C101(2) 2000
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)
MIN MAX UNIT
VCC+ Supply voltage 5 15 V
VCC– Supply voltage –5 –15 V
VCM Common-mode voltage VCC– + 4 VCC+ – 4 V
TA Ambient temperature TL06xM –55 125 °C
TL06xQ –40 125
TL06xI –40 85
TL06xC 0 70

6.4 Thermal Information - 8 Pins

THERMAL METRIC(1) TL06xx UNIT
D (SOIC) P (PDIP) PS (SO) PW (TSSOP) JG (CDIP)
8 PINS 8 PINS 8 PINS 8 PINS 8 PINS
RθJA Junction-to-ambient thermal resistance(2)(3) 97 85 95 149 °C/W
RθJC(top) Junction-to-case (top) thermal resistance(4)(5) 14.5 °C/W
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report, SPRA953.
(2) Maximum power dissipation is a function of TJ(max), RθJA, and TA. The maximum allowable power dissipation at any allowable ambient temperature is PD = (TJ(max) – TA)/RθJA. Operating at the absolute maximum TJ of 150°C can affect reliability.
(3) The package thermal impedance is calculated in accordance with JESD 51-7.
(4) Maximum power dissipation is a function of TJ(max), RθJC, and TC. The maximum allowable power dissipation at any allowable ambient temperature is PD = (TJ(max) – TC) / RθJC. Operating at the absolute maximum TJ of 150°C can affect reliability.
(5) The package thermal impedance is calculated in accordance with MIL-STD-883.

6.5 Thermal Information - 14 Pins

THERMAL METRIC(1) TL06xx UNIT
D (SOIC) N (PDIP) NS (SO) PS (SO) PW (TSSOP) J (CDIP) W (CFP)
14 PINS 14 PINS 14 PINS 8 PINS 14 PINS 14 PINS 14 PINS
RθJA Junction-to-ambient thermal resistance(2)(3) 86 80 76 95 113 °C/W
RθJC(top) Junction-to-case (top) thermal resistance(2)(3) 15.05 14.65 °C/W
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report, SPRA953.
(2) Maximum power dissipation is a function of TJ(max), RθJC, and TC. The maximum allowable power dissipation at any allowable ambient temperature is PD = (TJ(max) – TC) / RθJC. Operating at the absolute maximum TJ of 150°C can affect reliability.
(3) The package thermal impedance is calculated in accordance with MIL-STD-883.

6.6 Thermal Information - 20 Pins

THERMAL METRIC(1) TL06xx UNIT
FK (LCCC)
20 PINS
RθJA Junction-to-ambient thermal resistance(2)(3) °C/W
RθJC(top) Junction-to-case (top) thermal resistance(4)(5) 5.61 °C/W
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report, SPRA953.
(2) Maximum power dissipation is a function of TJ(max), RθJA, and TA. The maximum allowable power dissipation at any allowable ambient temperature is PD = (TJ(max) – TA)/RθJA. Operating at the absolute maximum TJ of 150°C can affect reliability.
(3) The package thermal impedance is calculated in accordance with JESD 51-7.
(4) Maximum power dissipation is a function of TJ(max), RθJC, and TC. The maximum allowable power dissipation at any allowable ambient temperature is PD = (TJ(max) – TC) / RθJC. Operating at the absolute maximum TJ of 150°C can affect reliability.
(5) The package thermal impedance is calculated in accordance with MIL-STD-883.

6.7 Electrical Characteristics for TL06xC and TL06xxC

VCC± = ±15 V (unless otherwise noted)
PARAMETER TEST CONDITIONS(1) TL061C, TL062C, TL064C TL061AC, TL062AC, TL064AC UNIT
MIN TYP MAX MIN TYP MAX
VIO Input offset voltage VO = 0, RS = 50 Ω TA = 25°C 3 15 3 6 mV
TA = Full range 20 7.5
αVIO Temperature coefficient
of input offset voltage
VO = 0, RS = 50 Ω, TA = Full range 10 10 μV/°C
IIO Input offset current VO = 0 TA = 25°C 5 200 5 100 pA
TA = Full range 5 3 nA
IIB Input bias current(2) VO = 0 TA = 25°C 30 400 30 200 pA
TA = Full range 10 7 nA
VICR Common-mode input
voltage range
TA = 25°C ±11 –12
to
15
±11 –12
to
15
V
VOM Maximum peak output
voltage swing
RL = 10 kΩ, TA = 25°C ±10 ±13.5 ±10 ±13.5 V
RL ≥ 10 kΩ, TA = Full range ±10 ±10
AVD Large-signal differential
voltage amplification
VO = ±10 V,
RL ≥ 2 kΩ
TA = 25°C 3 6 4 6 V/mV
TA = Full range 3 4
B1 Unity-gain bandwidth RL = 10 kΩ, TA = 25°C 1 1 MHz
ri Input resistance TA = 25°C 1012 1012 Ω
CMRR Common-mode
rejection ratio
VIC = VICRmin,
VO = 0, RS = 50 Ω, TA = 25°C
70 86 80 86 dB
kSVR Supply-voltage
rejection ratio
(ΔVCC±/ΔVIO)
VCC = ±9 V to ±15 V,
VO = 0, RS = 50 Ω, TA = 25°C
70 95 80 95 dB
PD Total power dissipation
(each amplifier)
VO = 0, No load, TA = 25°C 6 7.5 6 7.5 mW
ICC Supply current
(each amplifier)
VO = 0, No load, TA = 25°C 200 250 200 250 µA
VO1/VO2 Crosstalk attenuation AVD = 100, TA = 25°C 120 120 dB
(1) All characteristics are measured under open-loop conditions with zero common-mode input voltage unless otherwise specified. Full range for TA is 0°C to 70°C for TL06xC, TL06xAC, and TL06xBC and –40°C to 85°C for TL06xI.
(2) Input bias currents of an FET-input operational amplifier are normal junction reverse currents, which are temperature sensitive, as shown in Figure 12. Pulse techniques are used to maintain the junction temperature as close to the ambient temperature as possible.

6.8 Electrical Characteristics for TL06xxC and TL06xI

VCC± = ±15 V (unless otherwise noted)
PARAMETER TEST CONDITIONS(1) TL061BC, TL062BC, TL064BC TL061I, TL062I, TL064I UNIT
MIN TYP MAX MIN TYP MAX
VIO Input offset voltage VO = 0, RS = 50 Ω TA = 25°C 2 3 3 6 mV
TA = Full range 5 9
αVIO Temperature coefficient
of input offset voltage
VO = 0, RS = 50 Ω, TA = Full range 10 10 μV/°C
IIO Input offset current VO = 0 TA = 25°C 5 100 5 100 pA
TA = Full range 3 10 nA
IIB Input bias current(2) VO = 0 TA = 25°C 30 200 30 200 pA
TA = Full range 7 20 nA
VICR Common-mode input
voltage range
TA = 25°C ±11 –12
to
15
±11 –12
to
15
V
VOM Maximum peak output
voltage swing
RL = 10 kΩ, TA = 25°C ±10 ±13.5 ±10 ±13.5 V
RL ≥ 10 kΩ, TA = Full range ±10 ±10
AVD Large-signal differential
voltage amplification
VO = ±10 V,
RL ≥ 2 kΩ
TA = 25°C 4 6 4 6 V/mV
TA = Full range 4 4
B1 Unity-gain bandwidth RL = 10 kΩ, TA = 25°C 1 1 MHz
ri Input resistance TA = 25°C 1012 1012 Ω
CMRR Common-mode
rejection ratio
VIC = VICRmin,
VO = 0, RS = 50 Ω, TA = 25°C
80 86 80 86 dB
kSVR Supply-voltage
rejection ratio
(ΔVCC±/ΔVIO)
VCC = ±9 V to ±15 V,
VO = 0, RS = 50 Ω, TA = 25°C
80 95 80 95 dB
PD Total power dissipation
(each amplifier)
VO = 0, No load, TA = 25°C 6 7.5 6 7.5 mW
ICC Supply current
(each amplifier)
VO = 0, No load, TA = 25°C 200 250 200 250 µA
VO1/VO2 Crosstalk attenuation AVD = 100, TA = 25°C 120 120 dB
(1) All characteristics are measured under open-loop conditions with zero common-mode input voltage, unless otherwise specified. Full range for TA is 0°C to 70°C for TL06xC, TL06xAC, and TL06xBC and –40°C to 85°C for TL06xI.
(2) Input bias currents of an FET-input operational amplifier are normal junction reverse currents, which are temperature sensitive, as shown in Figure 12. Pulse techniques are used to maintain the junction temperature as close to the ambient temperature as possible.

6.9 Electrical Characteristics for TL06xM and TL064M

VCC± = ±15 V (unless otherwise noted)
PARAMETER TEST CONDITIONS(2) TL061M, TL062M TL064M UNIT
MIN TYP MAX MIN TYP MAX
VIO Input offset voltage VO = 0, RS = 50 Ω TA = 25°C 3 6 3 9 mV
TA = –55°C to 125°C 9 15
αVIO Temperature coefficient
of input offset voltage
VO = 0, RS = 50 Ω,
TA = –55°C to 125°C
10 10 μV/°C
IIO Input offset current VO = 0 TA = 25°C 5 100 5 100 pA
TA = –55°C 20(1) 20(1) nA
TA = 125°C 20 20
IIB Input bias current(3) VO = 0 TA = 25°C 30 200 30 200 pA
TA = –55°C 50(1) 50(1) nA
TA = 125°C 50 50
VICR Common-mode input
voltage range
TA = 25°C ±11 –12
to
15
±11 –12
to
15
V
VOM Maximum peak output
voltage swing
RL = 10 kΩ, TA = 25°C ±10 ±13.5 ±10 ±13.5 V
RL ≥ 10 kΩ, TA = –55°C to 125°C ±10 ±10
AVD Large-signal differential
voltage amplification
VO = ±10 V,
RL ≥ 2 kΩ
TA = 25°C 4 6 4 6 V/mV
TA = –55°C to 125°C 4 4
B1 Unity-gain bandwidth RL = 10 kΩ, TA = 25°C MHz
ri Input resistance TA = 25°C 1012 1012 Ω
CMRR Common-mode
rejection ratio
VIC = VICRmin,
VO = 0, RS = 50 Ω, TA = 25°C
80 86 80 86 dB
kSVR Supply-voltage
rejection ratio
(ΔVCC±/ΔVIO)
VCC = ±9 V to ±15 V,
VO = 0, RS = 50 Ω, TA = 25°C
80 95 80 95 dB
PD Total power dissipation
(each amplifier)
VO = 0, No load, TA = 25°C 6 7.5 6 7.5 mW
ICC Supply current
(each amplifier)
VO = 0, No load, TA = 25°C 200 250 200 250 µA
VO1/VO2 Crosstalk attenuation AVD = 100, TA = 25°C 120 120 dB
(1) This parameter is not production tested.
(2) All characteristics are measured under open-loop conditions, with zero common-mode voltage, unless otherwise specified.
(3) Input bias currents of an FET-input operational amplifier are normal junction reverse currents, which are temperature sensitive, as shown in Figure 12. Pulse techniques are used to maintain the junction temperature as close to the ambient temperature as possible.

6.10 Operating Characteristics

VCC± = ±15 V, TA= 25°C
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
SR Slew rate at unity gain(1) VI = 10 V,
RL = 10 kΩ,
CL = 100 pF,
see Figure 16
1.5 3.5 V/μs
tr Rise-time VI = 20 V,
RL = 10 kΩ,
CL = 100 pF,
see Figure 16
0.2 μs
Overshoot factor 10%
Vn Equivalent input noise voltage RS = 20 Ω f = 1 kHz 42 nV/√Hz
(1) Slew rate at –55°C to 125°C is 0.7 V/μs min.

6.11 Typical Characteristics

Data at high and low temperatures are applicable only within the specified operating free-air temperature ranges of the various devices.

Table 1. Table of Graphs

FIGURE
Maximum peak output voltage versus Supply voltage Figure 1
Maximum peak output voltage versus Free-air temperature Figure 2
Maximum peak output voltage versus Load resistance Figure 3
Maximum peak output voltage versus Frequency Figure 4
Differential voltage amplification versus Free-air temperature Figure 5
Large-signal differential voltage amplification versus Frequency Figure 6
Phase shift versus Frequency Figure 6
Supply current versus Supply voltage Figure 7
Supply current versus Free-air temperature Figure 8
Total power dissipation versus Free-air temperature Figure 9
Common-mode rejection ratio versus Free-air temperature Figure 10
Normalized unity-gain bandwidth versus Free-air temperature Figure 11
Normalized slew rate versus Free-air temperature Figure 11
Normalized phase shift versus Free-air temperature Figure 11
Input bias current versus Free-air temperature Figure 12
Voltage-follower large-signal pulse response versus Time Figure 13
Output voltage versus Elapsed time Figure 14
Equivalent input noise voltage versus Frequency Figure 15
TL061 TL061A TL061B TL062 TL062A TL062B TL064 TL064A TL064B tc1_los078.gifFigure 1. Maximum Peak Output Voltage vs Supply Voltage
TL061 TL061A TL061B TL062 TL062A TL062B TL064 TL064A TL064B tc3_los078.gifFigure 3. Maximum Peak Output Voltage vs Load Resistance
TL061 TL061A TL061B TL062 TL062A TL062B TL064 TL064A TL064B tc5_los078.gifFigure 5. Differential Voltage Amplification vs Free-Air Temperature
TL061 TL061A TL061B TL062 TL062A TL062B TL064 TL064A TL064B tc7_los078.gifFigure 7. Supply Current vs Supply Voltage
TL061 TL061A TL061B TL062 TL062A TL062B TL064 TL064A TL064B tc9_los078.gifFigure 9. Total Power Dissipation vs Free-Air Temperature
TL061 TL061A TL061B TL062 TL062A TL062B TL064 TL064A TL064B tc11_los078.gifFigure 11. Normalized Unity-Gain Bandwidth, Slew Rate, and Phase Shift vs Free-Air Temperature
TL061 TL061A TL061B TL062 TL062A TL062B TL064 TL064A TL064B tc13_los078.gifFigure 13. Voltage-Follower Large-Signal Pulse Response vs Time
TL061 TL061A TL061B TL062 TL062A TL062B TL064 TL064A TL064B tc15_los078.gifFigure 15. Equivalent Input Noise Voltage vs Frequency
TL061 TL061A TL061B TL062 TL062A TL062B TL064 TL064A TL064B tc2_los078.gifFigure 2. Maximum Peak Output Voltage vs Free-Air Temperature
TL061 TL061A TL061B TL062 TL062A TL062B TL064 TL064A TL064B tc4_los078.gifFigure 4. Maximum Peak Output Voltage vs Frequency
TL061 TL061A TL061B TL062 TL062A TL062B TL064 TL064A TL064B tc6_los078.gifFigure 6. Large-Signal Differential Voltage Amplification and Phase Shift vs Frequency
TL061 TL061A TL061B TL062 TL062A TL062B TL064 TL064A TL064B tc8_los078.gifFigure 8. Supply Current vs Free-Air Temperature
TL061 TL061A TL061B TL062 TL062A TL062B TL064 TL064A TL064B tc10_los078.gifFigure 10. All Except TL06_C Common-Mode Rejection Ratio vs Free-Air Temperature
TL061 TL061A TL061B TL062 TL062A TL062B TL064 TL064A TL064B tc12_los078.gifFigure 12. Input Bias Current vs Free-Air Temperature
TL061 TL061A TL061B TL062 TL062A TL062B TL064 TL064A TL064B tc14_los078.gifFigure 14. Output Voltage vs Elapsed Time