SLLS177I March   1994  – March 2021 TL16C550C

PRODUCTION DATA  

  1. Features
  2. Description
  3. Revision History
  4. Pin Configuration and Functions
  5. Specifications
    1. 5.1  Absolute Maximum Ratings
    2. 5.2  Recommended Operating Conditions (Low Voltage - 3.3 nominal)
    3. 5.3  Recommended Operating Conditions (Standard Voltage - 5 V nominal)
    4. 5.4  Thermal Information
    5. 5.5  Electrical Characteristics (Low Voltage - 3.3 V nominal)
    6. 5.6  Electrical Characteristics (Standard Voltage - 5 V nominal)
    7. 5.7  System Timing Requirements
    8. 5.8  System Switching Characteristics
    9. 5.9  Baud Generator Switching Characteristics
    10. 5.10 Receiver Switching Characteristics
    11. 5.11 Transmitter Switching Characteristics
    12. 5.12 Modem Control Switching Characteristics
  6. Parameter Measurement Information
  7. Detailed Description
    1. 7.1 Autoflow Control (see Figure 1-1)
    2. 7.2 Auto-RTS (see Figure 1-1)
    3. 7.3 Auto-CTS (see Figure 1-1)
    4. 7.4 Enabling Autoflow Control and Auto-CTS
    5. 7.5 Auto-CTS and Auto-RTS Functional Timing
    6. 7.6 Functional Block Diagram
    7. 7.7 Principles of Operation
      1. 7.7.1  Accessible Registers
      2. 7.7.2  FIFO Control Register (FCR)
      3. 7.7.3  FIFO Interrupt Mode Operation
      4. 7.7.4  FIFO Polled Mode Operation
      5. 7.7.5  Interrupt Enable Register (IER)
      6. 7.7.6  Interrupt Identification Register (IIR)
      7. 7.7.7  Line Control Register (LCR)
      8. 7.7.8  Line Status Register (LSR)
      9. 7.7.9  Modem Control Register (MCR)
      10. 7.7.10 Modem Status Register (MSR)
      11. 7.7.11 Programming Baud Generator
      12. 7.7.12 Receiver Buffet Register (RBR)
      13. 7.7.13 Scratch Register
      14. 7.7.14 Transmitter Holding Register (THR)
  8. Application Information
  9. Device and Documentation Support
    1. 9.1 Receiving Notification of Documentation Updates
    2. 9.2 Support Resources
    3. 9.3 Trademarks
    4. 9.4 Electrostatic Discharge Caution
    5. 9.5 Glossary
  10. 10Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Line Control Register (LCR)

The system programmer controls the format of the asynchronous data communication exchange through the LCR. In addition, the programmer is able to retrieve, inspect, and modify the contents of the LCR; this eliminates the need for separate storage of the line characteristics in system memory. The contents of this register are summarized in Table 7-3 and described in the following bulleted list.

  • Bits 0 and 1: These two bits specify the number of bits in each transmitted or received serial character. These bits are encoded as shown in Table 7-6.
Table 7-6 Serial Character Word Length
BIT 1 BIT 0 WORD LENGTH
0 0 5 bits
0 1 6 bits
1 0 7 bits
1 1 8 bits
  • Bit 2: This bit specifies either one, one and one-half, or two stop bits in each transmitted character. When bit 2 is cleared, one stop bit is generated in the data. When bit 2 is set, the number of stop bits generated is dependent on the word length selected with bits 0 and 1. The receiver clocks only the first stop bit regardless of the number of stop bits selected. The number of stop bits generated in relation to word length and bit 2 are shown in Table 7-7.
Table 7-7 Number of Stop Bits Generated
BIT 2 WORD LENGTH SELECTED BY BITS 1 AND 2 NUMBER OF STOP BITS GENERATED
0 Any word length 1
1 5 bits 1 1/2
1 6 bits 2
1 7 bits 2
1 8 bits 2
  • Bit 3: This bit is the parity enable bit. When bit 3 is set, a parity bit is generated in transmitted data between the last data word bit and the first stop bit. In received data, if bit 3 is set, parity is checked. When bit 3 is cleared, no parity is generated or checked.
  • Bit 4: This bit is the even parity select bit. When parity is enabled (bit 3 is set) and bit 4 is set even parity (an even number of logic 1s in the data and parity bits) is selected. When parity is enabled and bit 4 is cleared, odd parity (an odd number of logic 1s) is selected.
  • Bit 5: This bit is the stick parity bit. When bits 3, 4, and 5 are set, the parity bit is transmitted and checked as cleared. When bits 3 and 5 are set and bit 4 is cleared, the parity bit is transmitted and checked as set. If bit 5 is cleared, stick parity is disabled.
  • Bit 6: This bit is the break control bit. Bit 6 is set to force a break condition; i.e., a condition where SOUT is forced to the spacing (cleared) state. When bit 6 is cleared, the break condition is disabled and has no affect on the transmitter logic; it only effects SOUT.
  • Bit 7: This bit is the divisor latch access bit (DLAB). Bit 7 must be set to access the divisor latches of the baud generator during a read or write. Bit 7 must be cleared during a read or write to access the receiver buffer, the THR, or the IER.