SLVS543Q August   2004  – July 2022 TL431 , TL432

PRODUCTION DATA  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Device Comparison Table
  6. Pin Configuration and Functions
  7. Specifications
    1. 7.1  Absolute Maximum Ratings
    2. 7.2  ESD Ratings
    3. 7.3  Thermal Information
    4. 7.4  Recommended Operating Conditions
    5. 7.5  Electrical Characteristics, TL431C, TL432C
    6. 7.6  Electrical Characteristics, TL431I, TL432I
    7. 7.7  Electrical Characteristics, TL431Q, TL432Q
    8. 7.8  Electrical Characteristics, TL431AC, TL432AC
    9. 7.9  Electrical Characteristics, TL431AI, TL432AI
    10. 7.10 Electrical Characteristics, TL431AQ, TL432AQ
    11. 7.11 Electrical Characteristics, TL431BC, TL432BC
    12. 7.12 Electrical Characteristics, TL431BI, TL432BI
    13. 7.13 Electrical Characteristics, TL431BQ, TL432BQ
    14.     Typical Characteristics
  8. Parameter Measurement Information
  9. Detailed Description
    1. 9.1 Overview
    2. 9.2 Functional Block Diagram
    3. 9.3 Feature Description
    4. 9.4 Device Functional Modes
      1. 9.4.1 Open Loop (Comparator)
      2. 9.4.2 Closed Loop
  10. 10Applications and Implementation
    1. 10.1 Application Information
    2. 10.2 Typical Applications
      1. 10.2.1 Comparator With Integrated Reference
        1. 10.2.1.1 Design Requirements
        2. 10.2.1.2 Detailed Design Procedure
          1. 10.2.1.2.1 Basic Operation
            1. 10.2.1.2.1.1 Overdrive
          2. 10.2.1.2.2 Output Voltage and Logic Input Level
            1. 10.2.1.2.2.1 Input Resistance
        3. 10.2.1.3 Application Curve
      2. 10.2.2 Shunt Regulator/Reference
        1. 10.2.2.1 Design Requirements
        2. 10.2.2.2 Detailed Design Procedure
          1. 10.2.2.2.1 Programming Output/Cathode Voltage
          2. 10.2.2.2.2 Total Accuracy
          3. 10.2.2.2.3 Stability
          4. 10.2.2.2.4 Start-Up Time
        3. 10.2.2.3 Application Curve
    3. 10.3 System Examples
  11. 11Power Supply Recommendations
  12. 12Layout
    1. 12.1 Layout Guidelines
    2. 12.2 Layout Example
  13. 13Device and Documentation Support
    1. 13.1 Device Nomenclature
    2. 13.2 Related Links
    3. 13.3 Receiving Notification of Documentation Updates
    4. 13.4 Support Resources
    5. 13.5 Trademarks
    6. 13.6 Electrostatic Discharge Caution
    7. 13.7 Glossary
  14. 14Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Typical Characteristics

Data at high and low temperatures are applicable only within the recommended operating free-air temperature ranges of the various devices.

GUID-C8351FE0-203B-4BE2-AE2D-AC4813C8EE6D-low.gifFigure 7-1 Reference Voltage vs Free-Air Temperature
GUID-10B283F6-CB67-407C-B6CD-E3673E20E1D3-low.gifFigure 7-3 Cathode Current vs Cathode Voltage
GUID-8C46F1E8-E496-4672-9D9B-47EF3104D3CF-low.gifFigure 7-5 Off-State Cathode Current vs Free-Air Temperature
GUID-88F7BD5A-691A-46CD-87C9-E2E6822EF2B0-low.gifFigure 7-2 Reference Current vs Free-Air Temperature
GUID-2B7C6F85-525E-40A9-967C-A5DF6178DF63-low.gifFigure 7-4 Cathode Current vs Cathode Voltage
GUID-BA6616FD-916F-4A4C-B8CA-0CB3A0F0025C-low.gifFigure 7-6 Ratio of Delta Reference Voltage to Delta Cathode Voltage vs Free-Air Temperature
GUID-E115DC07-6B2D-4981-8B2B-DBEC8C6C1C98-low.gifFigure 7-7 Equivalent Input Noise Voltage vs Frequency
GUID-6F206A63-6180-4499-9335-9060BBB66F53-low.gifFigure 7-8 Equivalent Input Noise Voltage Over a 10-S Period
GUID-35DFCDF5-9632-4CB9-BB55-02FE551D1253-low.gifFigure 7-9 Test Circuit for Equivalent Input Noise Voltage Over a 10-S Period
GUID-53D2EBC6-501E-4FBD-8A14-F4D3FE7FD09B-low.gifFigure 7-10 Small-Signal Voltage Amplification vs Frequency
GUID-175368DD-3E73-4A30-9661-C80E2AD2C5F4-low.gifFigure 7-12 Reference Impedance vs Frequency
GUID-7ABC91BD-2821-432B-8A3A-98359B48D3DF-low.gifFigure 7-14 Pulse Response
GUID-00B46D73-244A-4004-9C4D-F262B9396743-low.gif
The areas under the curves represent conditions that may cause the device to oscillate. For curves B, C, and D, R2 and V+ are adjusted to establish the initial VKA and IKA conditions, with CL = 0. VBATT and CL then are adjusted to determine the ranges of stability.
Figure 7-16 Stability Boundary Conditions for All TL431 and TL431A Devices (Except for SOT23-3, SC-70, and Q-Temp Devices)
GUID-EA6C3017-FAB9-4B87-86F5-D7CB76E4B5C6-low.gif
The areas under the curves represent conditions that may cause the device to oscillate. For curves B, C, and D, R2 and V+ are adjusted to establish the initial VKA and IKA conditions, with CL = 0. VBATT and CL then are adjusted to determine the ranges of stability.
Figure 7-18 Stability Boundary Conditions for All TL431B, TL432, SOT-23, SC-70, and Q-Temp Devices
GUID-B5E8B3E5-BFE8-46D9-84B0-F45EAF234F39-low.gifFigure 7-11 Test Circuit for Voltage Amplification
GUID-3DE49738-8902-4428-B70A-7A35DCEC1649-low.gif
Figure 7-13 Test Circuit for Reference Impedance
GUID-A9B9E9C2-4AFB-4CB3-B1E6-438557B3E357-low.gif
Figure 7-15 Test Circuit for Pulse Response
GUID-99B86E68-54B4-4ADA-A878-CCC009B8972F-low.gifFigure 7-17 Test Circuits for Stability Boundary Conditions
GUID-5BE21ACD-CD0A-4D4E-A804-F525EA72BCC4-low.gif
Figure 7-19 Test Circuit for Stability Boundary Conditions