SLOS190H February   1997  – March 2016 TLC2272 , TLC2272A , TLC2272AM , TLC2272M , TLC2274 , TLC2274A , TLC2274AM , TLC2274M

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Pin Configuration and Functions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 TLC2272 and TLC2272A Electrical Characteristics VDD = 5 V
    6. 6.6 TLC2272 and TLC2272A Electrical Characteristics VDD± = ±5 V
    7. 6.7 TLC2274 and TLC2274A Electrical Characteristics VDD = 5 V
    8. 6.8 TLC2274 and TLC2274A Electrical Characteristics VDD± = ±5 V
    9. 6.9 Typical Characteristics
  7. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
    4. 7.4 Device Functional Modes
  8. Application and Implementation
    1. 8.1 Application Information
      1. 8.1.1 Macromodel Information
    2. 8.2 Typical Application
      1. 8.2.1 High-Side Current Monitor
        1. 8.2.1.1 Design Requirements
        2. 8.2.1.2 Detailed Design Procedure
          1. 8.2.1.2.1 Differential Amplifier Equations
        3. 8.2.1.3 Application Curves
  9. Power Supply Recommendations
  10. 10Layout
    1. 10.1 Layout Guidelines
    2. 10.2 Layout Example
  11. 11Device and Documentation Support
    1. 11.1 Related Links
    2. 11.2 Community Resources
    3. 11.3 Trademarks
    4. 11.4 Electrostatic Discharge Caution
    5. 11.5 Glossary
  12. 12Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

6 Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)(1)
MIN MAX UNIT
Supply voltage, VDD+(2) 8 V
VDD-(2) –8 V
Differential input voltage, VID(3) ±16 V
Input voltage, VI(any input)(2) VDD− − 0.3 VDD+ V
Input current, II (any input) ±5 mA
Output current, IO ±50 mA
Total current into VDD+ ±50 mA
Total current out of VDD– ±50 mA
Duration of short-circuit current at (or below) 25°C(4) Unlimited
Operating free-air temperature range, TA C level parts 0 70 °C
I, Q level parts –40 125
M level parts –55 125
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds D, N, P or PW package 260 °C
Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds J or U package 300 °C
Storage temperature, Tstg –65 150 °C
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
(2) All voltage values, except differential voltages, are with respect to the midpoint between VDD+ and VDD.
(3) Differential voltages are at IN+ with respect to IN–. Excessive current will flow if input is brought below VDD– − 0.3 V.
(4) The output may be shorted to either supply. Temperature or supply voltages must be limited to ensure that the maximum dissipation rating is not exceeded.

6.2 ESD Ratings

VALUE UNIT
V(ESD) Electrostatic discharge Human-body model (HBM), per AEC Q100-002(1) Q-grade and M-grade devices in D and PW packages ±2000 V
Charged-device model (CDM), per AEC Q100-011 Q-grade and M-grade devices in D and PW packages ±1000
(1) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.

6.3 Recommended Operating Conditions

MIN MAX UNIT
VDD± Supply voltage C LEVEL PARTS ±2.2 ±8 V
I LEVEL PARTS ±2.2 ±8
Q LEVEL PARTS ±2.2 ±8
M LEVEL PARTS ±2.2 ±8
VI Input voltage C LEVEL PARTS VDD− VDD+ −1.5 V
I LEVEL PARTS VDD− VDD+ −1.5
Q LEVEL PARTS VDD− VDD+ −1.5
M LEVEL PARTS VDD− VDD+ −1.5
VIC Common-mode input voltage C LEVEL PARTS VDD− VDD+ −1.5 V
I LEVEL PARTS VDD− VDD+ −1.5
Q LEVEL PARTS VDD− VDD+ −1.5
M LEVEL PARTS VDD− VDD+ −1.5
TA Operating free-air temperature C LEVEL PARTS 0 70 °C
I LEVEL PARTS –40 125
Q LEVEL PARTS –40 125
M LEVEL PARTS –55 125

6.4 Thermal Information

THERMAL METRIC(1) TLC2272 TLC2274 UNIT
D
(SOIC)
P
(PDIP)
PW
(TSSOP)
FK
(LCCC)
U
(CFP)
D
(SOIC)
N
(PDIP)
PW
(TSSOP)
FK
(LCCC)
J
(CDIP)
8-PIN 8-PIN 8-PIN 20-PIN 10-PIN 14-PIN 14-PIN 14-PIN 20-PIN 14-PIN
RθJA Junction-to-ambient thermal resistance (2)(3) 115.6 58.5 175.8 83.8 111.6 °C/W
RθJC(top) Junction-to-case (top) thermal resistance (2)(3) 61.8 48.3 58.8 18 121.3 43.2 34 41.2 16 16.2 °C/W
RθJB Junction-to-board thermal resistance 55.9 35.6 104.3 38.4 54.7 °C/W
ψJT Junction-to-top characterization parameter 14.3 25.9 5.9 9.4 3.9 °C/W
ψJB Junction-to-board characterization parameter 55.4 35.5 102.6 38.1 53.9 °C/W
RθJC(bot) Junction-to-case (bottom) thermal resistance 8.68 °C/W
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report, SPRA953.
(2) Maximum power dissipation is a function of TJ(max), θJA, and TA. The maximum allowable power dissipation at any allowable ambient temperature is PD = (TJ(max) − TA) / θJA. Operating at the absolute maximum TJ of 150°C can affect reliability.
(3) The package thermal impedance is calculated in accordance with JESD 51-7 (plastic) or MIL-STD-883 Method 1012 (ceramic).

6.5 TLC2272 and TLC2272A Electrical Characteristics VDD = 5 V

at specified free-air temperature, VDD = 5 V; TA = 25°C, unless otherwise noted.
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
VIO Input offset voltage VIC = 0 V, VDD± = ±2.5 V,
VO = 0 V, RS = 50 Ω
TLC2272 TA = 25°C 300 2500 µV
TLC2272A 300 950
TLC2272 Full Range(1) 3000
TLC2272A 1500
αVIO Temperature coefficient of
input offset voltage
VIC = 0 V, VDD± = ±2.5 V, VO = 0 V, RS = 50 Ω 2 μV/°C
Input offset voltage long-term drift(3) VIC = 0 V, VDD± = ±2.5 V, VO = 0 V, RS = 50 Ω 0.002 μV/mo
IIO Input offset current VIC = 0 V, VDD± = ±2.5 V,
VO = 0 V, RS = 50 Ω
All level parts TA = 25°C 0.5 60 pA
C level part TA = 0°C to 80°C 100
I level part TA = –40°C to 85°C 150
Q level part TA = –40°C to 125°C 800
M level part TA = –55°C to 125°C 800
IIB Input bias current VIC = 0 V, VDD± = ±2.5 V,
VO = 0 V, RS = 50 Ω
All level parts TA = 25°C 1 60 pA
C level part TA = 0°C to 80°C 100
I level part TA = –40°C to 85°C 150
Q level part TA = –40°C to 125°C 800
M level part TA = –55°C to 125°C 800
VICR Common-mode input voltage RS = 50 Ω; |VIO | ≤ 5 mV TA = 25°C –0.3 2.5 4 V
Full Range(1) 0 2.5 3.5
VOH High-level output voltage IOH = −20 μA 4.99 V
IOH = −200 μA TA = 25°C 4.85 4.93
Full Range(1) 4.85
IOH = −1 mA TA = 25°C 4.25 4.65
Full Range(1) 4.25
VOL Low-level output voltage VIC = 2.5 V IOL = 50 μA 0.01 V
IOL = 500 μA TA = 25°C 0.09 0.15
Full Range(1) 0.15
IOL = 5 mA TA = 25°C 0.9 1.5
Full Range(1) 1.5
AVD Large-signal differential
voltage amplification
VIC = 2.5 V,
VO = 1 V to 4 V;
RL = 10 kΩ(2)
C level part TA = 25°C 15 35 V/mV
TA = 0°C to 80°C 15
I level part TA = 25°C 15 35
TA = –40°C to 85°C 15
Q level part TA = 25°C 10 35
TA = –40°C to 125°C 10
M level part TA = 25°C 10 35
TA = –55°C to 125°C 10
VIC = 2.5 V, VO = 1 V to 4 V; RL = 1 MΩ(2) 175
rid Differential input resistance 1012 Ω
ri Common-mode input resistance 1012 Ω
ci Common-mode input capacitance f = 10 kHz, P package 8 pF
zo Closed-loop output impedance f = 1 MHz, AV = 10 140 Ω
CMRR Common-mode rejection ratio VIC = 0 V to 2.7 V,
VO = 2.5 V, RS = 50 Ω
TA = 25°C 70 75 dB
Full Range(1) 70
kSVR Supply-voltage rejection ratio
(ΔVDD / ΔVIO)
VDD = 4.4 V to 16 V,
VIC = VDD / 2, no load
TA = 25°C 80 95 dB
Full Range(1) 80
IDD Supply currrent VO = 2.5 V, no load TA = 25°C 2.2 3 mA
Full Range(1) 3
SR Slew rate at unity gain VO = 0.5 V to 2.5 V,
RL = 10 kΩ(2), CL = 100 pF(2)
TA = 25°C 2.3 3.6 V/µs
Full Range(1) 1.7
Vn Equivalent input noise voltage f = 10 Hz 50 nV/√Hz
f = 1 kHz 9
VNPP Peak-to-peak equivalent
input noise voltage
f = 0.1 Hz to 1 Hz 1 µV
f = 0.1 Hz to 10 Hz 1.4
In Equivalent input noise current 0.6 fA/√Hz
THD+N Total harmonic distortion + noise VO = 0.5 V to 2.5 V,
f = 20 kHz, RL = 10 kΩ(2)
AV = 1 0.0013%
AV = 10 0.004%
AV = 100 0.03%
Gain-bandwidth product f = 10 kHz, RL = 10 kΩ(2), CL = 100 pF(2) 2.18 MHz
BOM Maximum output-swing bandwidth VO(PP) = 2 V, AV = 1, RL = 10 kΩ(2), CL = 100 pF(2) 1 MHz
ts Settling time AV = –1, RL = 10 kΩ(2),
Step = 0.5 V to 2.5 V, CL = 100 pF(2)
To 0.1% 1.5 µs
To 0.01% 2.6
φm Phase margin at unity gain RL = 10 kΩ(2), CL = 100 pF(2) 50°
Gain margin RL = 10 kΩ(2), CL = 100 pF(2) 10 dB
(1) TA = –55°C to 125°C.
(2) Referenced to 0 V.
(3) Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.

6.6 TLC2272 and TLC2272A Electrical Characteristics VDD± = ±5 V

at specified free-air temperature, VDD± = ±5 V; TA = 25°C, unless otherwise noted.
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
VIO Input offset voltage VIC = 0 V, VO = 0 V,
RS = 50 Ω
TLC2272 TA = 25°C 300 2500 µV
TLC2272A 300 950
TLC2272 Full Range(1) 3000
TLC2272A 1500
αVIO Temperature coefficient of
input offset voltage
VIC = 0 V, VO = 0 V, RS = 50 Ω 2 μV/°C
Input offset voltage long-term drift(3) VIC = 0 V, VO = 0 V, RS = 50 Ω 0.002 μV/mo
IIO Input offset current VIC = 0 V, VO = 0 V,
RS = 50 Ω
All level parts TA = 25°C 0.5 60 pA
C level part TA = 0°C to 80°C 100
I level part TA = –40°C to 85°C 150
Q level part TA = –40°C to 125°C 800
M level part TA = –55°C to 125°C 800
IIB Input bias current VIC = 0 V, VO = 0 V,
RS = 50 Ω
All level parts TA = 25°C 1 60 pA
C level part TA = 0°C to 80°C 100
I level part TA = –40°C to 85°C 150
Q level part TA = –40°C to 125°C 800
M level part TA = –55°C to 125°C 800
VICR Common-mode input voltage RS = 50 Ω; |VIO | ≤ 5 mV TA = 25°C –5.3 0 4 V
Full Range(1) –5 0 3.5
VOM+ Maximum positive peak
output voltage
IO = −20 μA 4.99 V
IO = −200 μA TA = 25°C 4.85 4.93
Full Range(1) 4.85
IO = −1 mA TA = 25°C 4.25 4.65
Full Range(1) 4.25
VOM- Maximum negative
peak output voltage
VIC = 0 V, IO = 50 μA –4.99 V
IO = 500 μA TA = 25°C –4.85 –4.91
Full Range(1) –4.85
IO = 5 mA TA = 25°C –3.5 –4.1
Full Range(1) –3.5
AVD Large-signal differential
voltage amplification
VO = ±4 V; RL = 10 kΩ C level part TA = 25°C 25 50 V/mV
TA = 0°C to 80°C 25
I level part TA = 25°C 25 50
TA = –40°C to 85°C 25
Q level part TA = 25°C 20 50
TA = –40°C to 125°C 20
M level part TA = 25°C 20 50
TA = –55°C to 125°C 20
VO = ±4 V; RL = 1 MΩ 300
rid Differential input resistance 1012 Ω
ri Common-mode input resistance 1012 Ω
ci Common-mode input capacitance f = 10 kHz, P package 8 pF
zo Closed-loop output impedance f = 1 MHz, AV = 10 130 Ω
CMRR Common-mode rejection ratio VIC = –5 V to 2.7 V,
VO = 0 V, RS = 50 Ω
TA = 25°C 75 80 dB
Full Range(1) 75
kSVR Supply-voltage rejection ratio
(ΔVDD / ΔVIO)
VDD+ = 2.2 V to ±8 V,
VIC = 0 V, no load
TA = 25°C 80 95 dB
Full Range(1) 80
IDD Supply currrent VO = 0 V, no load TA = 25°C 2.4 3 mA
Full Range(1) 3
SR Slew rate at unity gain VO = ±2.3 V,
RL = 10 kΩ, CL = 100 pF
TA = 25°C 2.3 3.6 V/µs
Full Range(1) 1.7
Vn Equivalent input noise voltage f = 10 Hz 50 nV/√Hz
f = 1 kHz 9
VNPP Peak-to-peak equivalent
input noise voltage
f = 0.1 Hz to 1 Hz 1 µV
f = 0.1 Hz to 10 Hz 1.4
In Equivalent input noise current 0.6 fA/√Hz
THD+N Total harmonic distortion + noise VO = ±2.3,
f = 20 kHz, RL = 10 kΩ
AV = 1 0.0011%
AV = 10 0.004%
AV = 100 0.03%
Gain-bandwidth product f = 10 kHz, RL = 10 kΩ, CL = 100 pF 2.25 MHz
BOM Maximum output-swing bandwidth VO(PP) = 4.6 V, AV = 1, RL = 10 kΩ, CL = 100 pF 0.54 MHz
ts Settling time AV = –1, RL = 10 kΩ,
Step = –2.3 V to 2.3 V, CL = 100 pF
To 0.1% 1.5 µs
To 0.01% 3.2
φm Phase margin at unity gain RL = 10 kΩ, CL = 100 pF 52°
Gain margin RL = 10 kΩ, CL = 100 pF 10 dB
(1) TA = –55°C to 125°C.

6.7 TLC2274 and TLC2274A Electrical Characteristics VDD = 5 V

at specified free-air temperature, VDD = 5 V; TA = 25°C, unless otherwise noted.
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
VIO Input offset voltage VIC = 0 V, VDD± = ±2.5 V,
VO = 0 V, RS = 50 Ω
TLC2274 TA = 25°C 300 2500 µV
TLC2274A 300 950
TLC2274 Full Range(1) 3000
TLC2274A 1500
αVIO Temperature coefficient of
input offset voltage
VIC = 0 V, VDD± = ±2.5 V, VO = 0 V, RS = 50 Ω 2 μV/°C
Input offset voltage long-term drift(3) VIC = 0 V, VDD± = ±2.5 V, VO = 0 V, RS = 50 Ω 0.002 μV/mo
IIO Input offset current VIC = 0 V, VDD± = ±2.5 V,
VO = 0 V, RS = 50 Ω
All level parts TA = 25°C 0.5 60 pA
C level part TA = 0°C to 80°C 100
I level part TA = –40°C to 85°C 150
Q level part TA = –40°C to 125°C 800
M level part TA = –55°C to 125°C 800
IIB Input bias current VIC = 0 V, VDD± = ±2.5 V,
VO = 0 V, RS = 50 Ω
All level parts TA = 25°C 1 60 pA
C level part TA = 0°C to 80°C 100
I level part TA = –40°C to 85°C 150
Q level part TA = –40°C to 125°C 800
M level part TA = –55°C to 125°C 800
VICR Common-mode input voltage RS = 50 Ω; |VIO | ≤ 5 mV TA = 25°C –0.3 2.5 4 V
Full Range(1) 0 2.5 3.5
VOH High-level output voltage IOH = −20 μA 4.99 V
IOH = −200 μA TA = 25°C 4.85 4.93
Full Range(1) 4.85
IOH = −1 mA TA = 25°C 4.25 4.65
Full Range(1) 4.25
VOL Low-level output voltage VIC = 2.5 V IOL = 50 μA 0.01 V
IOL = 500 μA TA = 25°C 0.09 0.15
Full Range(1) 0.15
IOL = 5 mA TA = 25°C 0.9 1.5
Full Range(1) 1.5
AVD Large-signal differential
voltage amplification
VIC = 2.5 V, VO = 1 V to 4 V;
RL = 10 kΩ(2)
C level part TA = 25°C 15 35 V/mV
TA = 0°C to 80°C 15
I level part TA = 25°C 15 35
TA = –40°C to 85°C 15
Q level part TA = 25°C 10 35
TA = –40°C to 125°C 10
M level part TA = 25°C 10 35
TA = –55°C to 125°C 10
VIC = 2.5 V, VO = 1 V to 4 V; RL = 1 MΩ(2) 175
rid Differential input resistance 1012 Ω
ri Common-mode input resistance 1012 Ω
ci Common-mode input capacitance f = 10 kHz, P package 8 pF
zo Closed-loop output impedance f = 1 MHz, AV = 10 140 Ω
CMRR Common-mode rejection ratio VIC = 0 V to 2.7 V,
VO = 2.5 V, RS = 50 Ω
TA = 25°C 70 75 dB
Full Range(1) 70
kSVR Supply-voltage rejection ratio
(ΔVDD / ΔVIO)
VDD = 4.4 V to 16 V,
VIC = VDD / 2, no load
TA = 25°C 80 95 dB
Full Range(1) 80
IDD Supply currrent VO = 2.5 V, no load TA = 25°C 4.4 6 mA
Full Range(1) 6
SR Slew rate at unity gain VO = 0.5 V to 2.5 V,
RL = 10 kΩ(2), CL = 100 pF(2)
TA = 25°C 2.3 3.6 V/µs
Full Range(1) 1.7
Vn Equivalent input noise voltage f = 10 Hz 50 nV/√Hz
f = 1 kHz 9
VNPP Peak-to-peak equivalent
input noise voltage
f = 0.1 Hz to 1 Hz 1 µV
f = 0.1 Hz to 10 Hz 1.4
In Equivalent input noise current 0.6 fA/√Hz
THD+N Total harmonic distortion + noise VO = 0.5 V to 2.5 V,
f = 20 kHz, RL = 10 kΩ(2)
AV = 1 0.0013%
AV = 10 0.004%
AV = 100 0.03%
Gain-bandwidth product f = 10 kHz, RL = 10 kΩ(2), CL = 100 pF(2) 2.18 MHz
BOM Maximum output-swing bandwidth VO(PP) = 2 V, AV = 1, RL = 10 kΩ(2), CL = 100 pF(2) 1 MHz
ts Settling time AV = –1, RL = 10 kΩ(2),
Step = 0.5 V to 2.5 V, CL = 100 pF(2)
To 0.1% 1.5 µs
To 0.01% 2.6
φm Phase margin at unity gain RL = 10 kΩ(2), CL = 100 pF(2) 50°
Gain margin RL = 10 kΩ(2), CL = 100 pF(2) 10 dB
(1) TA = –55°C to 125°C.

6.8 TLC2274 and TLC2274A Electrical Characteristics VDD± = ±5 V

at specified free-air temperature, VDD± = ±5 V; TA = 25°C, unless otherwise noted.
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
VIO Input offset voltage VIC = 0 V, VO = 0 V,
RS = 50 Ω
TLC2274 TA = 25°C 300 2500 µV
TLC2274A 300 950
TLC2274 Full Range(1) 3000
TLC2274A 1500
αVIO Temperature coefficient of
input offset voltage
VIC = 0 V, VO = 0 V, RS = 50 Ω 2 μV/°C
Input offset voltage long-term drift(3) VIC = 0 V, VO = 0 V, RS = 50 Ω 0.002 μV/mo
IIO Input offset current VIC = 0 V, VO = 0 V,
RS = 50 Ω
All level parts TA = 25°C 0.5 60 pA
C level part TA = 0°C to 80°C 100
I level part TA = –40°C to 85°C 150
Q level part TA = –40°C to 125°C 800
M level part TA = –55°C to 125°C 800
IIB Input bias current VIC = 0 V, VO = 0 V,
RS = 50 Ω
All level parts TA = 25°C 1 60 pA
C level part TA = 0°C to 80°C 100
I level part TA = –40°C to 85°C 150
Q level part TA = –40°C to 125°C 800
M level part TA = –55°C to 125°C 800
VICR Common-mode input voltage RS = 50 Ω; |VIO | ≤ 5 mV TA = 25°C –5.3 0 4 V
Full Range(1) –5 0 3.5
VOM+ Maximum positive peak
output voltage
IO = −20 μA 4.99 V
IO = −200 μA TA = 25°C 4.85 4.93
Full Range(1) 4.85
IO = −1 mA TA = 25°C 4.25 4.65
Full Range(1) 4.25
VOM- Maximum negative peak
output voltage
VIC = 0 V IO = 50 μA –4.99 V
IO = 500 μA TA = 25°C –4.85 –4.91
Full Range(1) –4.85
IO = 5 mA TA = 25°C –3.5 –4.1
Full Range(1) –3.5
AVD Large-signal differential
voltage amplification
VO = ±4 V; RL = 10 kΩ C level part TA = 25°C 25 50 V/mV
TA = 0°C to 80°C 25
I level part TA = 25°C 25 50
TA = –40°C to 85°C 25
Q level part TA = 25°C 20 50
TA = –40°C to 125°C 20
M level part TA = 25°C 20 50
TA = –55°C to 125°C 20
VO = ±4 V; RL = 1 MΩ 300
rid Differential input resistance 1012 Ω
ri Common-mode input resistance 1012 Ω
ci Common-mode input capacitance f = 10 kHz, P package 8 pF
zo Closed-loop output impedance f = 1 MHz, AV = 10 130 Ω
CMRR Common-mode rejection ratio VIC = –5 V to 2.7 V,
VO = 0 V, RS = 50 Ω
TA = 25°C 75 80 dB
Full Range(1) 75
kSVR Supply-voltage rejection ratio
(ΔVDD / ΔVIO)
VDD+ = 2.2 V to ±8 V,
VIC = 0 V, no load
TA = 25°C 80 95 dB
Full Range(1) 80
IDD Supply currrent VO = 0 V, no load TA = 25°C 4.8 6 mA
Full Range(1) 6
SR Slew rate at unity gain VO = ±2.3 V,
RL = 10 kΩ, CL = 100 pF
TA = 25°C 2.3 3.6 V/µs
Full Range(1) 1.7
Vn Equivalent input noise voltage f = 10 Hz 50 nV/√Hz
f = 1 kHz 9
VNPP Peak-to-peak equivalent
input noise voltage
f = 0.1 Hz to 1 Hz 1 µV
f = 0.1 Hz to 10 Hz 1.4
In Equivalent input noise current 0.6 fA/√Hz
THD+N Total harmonic distortion + noise VO = ±2.3,
f = 20 kHz, RL = 10 kΩ
AV = 1 0.0011%
AV = 10 0.004%
AV = 100 0.03%
Gain-bandwidth product f = 10 kHz, RL = 10 kΩ, CL = 100 pF 2.25 MHz
BOM Maximum output-swing bandwidth VO(PP) = 4.6 V, AV = 1, RL = 10 kΩ, CL = 100 pF 0.54 MHz
ts Settling time AV = –1, RL = 10 kΩ,
Step = –2.3 V to 2.3 V, CL = 100 pF
To 0.1% 1.5 µs
To 0.01% 3.2
φm Phase margin at unity gain RL = 10 kΩ, CL = 100 pF 52°
Gain margin RL = 10 kΩ, CL = 100 pF 10 dB
(1) TA = –55°C to 125°C.

6.9 Typical Characteristics

Table 1. Table of Graphs

FIGURE(1)
VIO Input offset voltage Distribution 1, 2, 3, 4
vs Common-mode voltage 5, 6
αVIO Input offset voltage temperature coefficient Distribution 7, 8, 9, 10(2)
IIB /IIO Input bias and input offset current vs Free-air temperature 11(2)
VI Input voltage vs Supply voltage 12
vs Free-air temperature 13(2)
VOH High-level output voltage vs High-level output current 14(2)
VOL Low-level output voltage vs Low-level output current 15, 16(2)
VOM+ Maximum positive peak output voltage vs Output current 17(2)
VOM- Maximum negative peak output voltage vs Output current 18(2)
VO(PP) Maximum peak-to-peak output voltage vs Frequency 19
IOS Short-circuit output current vs Supply voltage 20
vs Free-air temperature 21(2)
VO Output voltage vs Differential input voltage 22, 23
AVD Large-signal differential voltage amplification vs Load resistance 24
Large-signal differential voltage amplification and phase margin vs Frequency 25, 26
Large-signal differential voltage amplification vs Free-air temperature 27(2), 28(2)
z0 Output impedance vs Frequency 29, 30
CMRR Common-mode rejection ratio vs Frequency 31
vs Free-air temperature 32
kSVR Supply-voltage rejection ratio vs Frequency 33, 34
vs Free-air temperature 35(2)
IDD Supply current vs Supply voltage 36(2), 37(2)
vs Free-air temperature 38(2), 39(2)
SR Slew rate vs Load Capacitance 40
vs Free-air temperature 41(2)
VO Inverting large-signal pulse response 42, 43
Voltage-follower large-signal pulse response 44, 45
Inverting small-signal pulse response 46, 47
Voltage-follower small-signal pulse response 48, 49
Vn Equivalent input noise voltage vs Frequency 50, 51
Noise voltage over a 10-second period 52
Integrated noise voltage vs Frequency 53
THD+N Total harmonic distortion + noise vs Frequency 54
Gain-bandwidth product vs Supply voltage 55
vs Free-air temperature 56(2)
φm Phase margin vs Load capacitance 57
Gain margin vs Load capacitance 58
(1) For all graphs where VDD = 5 V, all loads are referenced to 2.5 V.
(2) Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
TLC2272 TLC2272A TLC2272M TLC2272AM TLC2274 TLC2274A TLC2274M TLC2274AM slos190_typchar_1.gif Figure 1. Distribution of TLC2272 Input Offset Voltage
TLC2272 TLC2272A TLC2272M TLC2272AM TLC2274 TLC2274A TLC2274M TLC2274AM slos190_typchar_3.gif Figure 3. Distribution of TLC2274 Input Offset Voltage
TLC2272 TLC2272A TLC2272M TLC2272AM TLC2274 TLC2274A TLC2274M TLC2274AM slos190_typchar_5.gif Figure 5. Input Offset Voltage vs Common-Mode Voltage
TLC2272 TLC2272A TLC2272M TLC2272AM TLC2274 TLC2274A TLC2274M TLC2274AM slos190_typchar_7.gif Figure 7. Distribution of TLC2272 vs
Input Offset Voltage Temperature Coefficient
TLC2272 TLC2272A TLC2272M TLC2272AM TLC2274 TLC2274A TLC2274M TLC2274AM slos190_typchar_9.gif Figure 9. Distribution of TLC2274 vs
Input Offset Voltage Temperature Coefficient
TLC2272 TLC2272A TLC2272M TLC2272AM TLC2274 TLC2274A TLC2274M TLC2274AM slos190_typchar_11.gif Figure 11. Input Bias and Input Offset Current vs
Free-Air Temperature
TLC2272 TLC2272A TLC2272M TLC2272AM TLC2274 TLC2274A TLC2274M TLC2274AM slos190_typchar_13.gif Figure 13. Input Voltage vs Free-Air Temperature
TLC2272 TLC2272A TLC2272M TLC2272AM TLC2274 TLC2274A TLC2274M TLC2274AM slos190_typchar_15.gif Figure 15. Low-Level Output Voltage vs
Low-Level Output Current
TLC2272 TLC2272A TLC2272M TLC2272AM TLC2274 TLC2274A TLC2274M TLC2274AM slos190_typchar_17.gif Figure 17. Maximum Positive Peak Output Voltage vs
Output Current
TLC2272 TLC2272A TLC2272M TLC2272AM TLC2274 TLC2274A TLC2274M TLC2274AM slos190_typchar_19.gif Figure 19. Maximum Peak-to-Peak Output Voltage vs
Frequency
TLC2272 TLC2272A TLC2272M TLC2272AM TLC2274 TLC2274A TLC2274M TLC2274AM slos190_typchar_21.gif Figure 21. Short-Circuit Output Current vs
Free-Air Temperature
TLC2272 TLC2272A TLC2272M TLC2272AM TLC2274 TLC2274A TLC2274M TLC2274AM slos190_typchar_23.gif Figure 23. Output Voltage vs Differential Input Voltage
TLC2272 TLC2272A TLC2272M TLC2272AM TLC2274 TLC2274A TLC2274M TLC2274AM slos190_typchar_25.gif Figure 25. Large-Signal Differential Voltage Amplification and Phase Margin vs Frequency
TLC2272 TLC2272A TLC2272M TLC2272AM TLC2274 TLC2274A TLC2274M TLC2274AM slos190_typchar_27.gif Figure 27. Large-Signal Differential Voltage Amplification vs Free-Air Temperature
TLC2272 TLC2272A TLC2272M TLC2272AM TLC2274 TLC2274A TLC2274M TLC2274AM slos190_typchar_29.gif Figure 29. Output Impedance vs Frequency
TLC2272 TLC2272A TLC2272M TLC2272AM TLC2274 TLC2274A TLC2274M TLC2274AM slos190_typchar_31.gif Figure 31. Common-Mode Rejection Ratio vs Frequency
TLC2272 TLC2272A TLC2272M TLC2272AM TLC2274 TLC2274A TLC2274M TLC2274AM slos190_typchar_33.gif Figure 33. Supply-Voltage Rejection Ratio vs Frequency
TLC2272 TLC2272A TLC2272M TLC2272AM TLC2274 TLC2274A TLC2274M TLC2274AM slos190_typchar_35.gif Figure 35. Supply-Voltage Rejection Ratio vs
Free-Air Temperature
TLC2272 TLC2272A TLC2272M TLC2272AM TLC2274 TLC2274A TLC2274M TLC2274AM slos190_typchar_37.gif Figure 37. TLC2274 Supply Current vs Supply Voltage
TLC2272 TLC2272A TLC2272M TLC2272AM TLC2274 TLC2274A TLC2274M TLC2274AM slos190_typchar_39.gif Figure 39. TLC2274 Supply Current vs Free-Air Temperature
TLC2272 TLC2272A TLC2272M TLC2272AM TLC2274 TLC2274A TLC2274M TLC2274AM slos190_typchar_41.gif Figure 41. Slew Rate vs Free-Air Temperature
TLC2272 TLC2272A TLC2272M TLC2272AM TLC2274 TLC2274A TLC2274M TLC2274AM slos190_typchar_43.gif Figure 43. Inverting Large-Signal Pulse Response
TLC2272 TLC2272A TLC2272M TLC2272AM TLC2274 TLC2274A TLC2274M TLC2274AM slos190_typchar_45.gif Figure 45. Voltage-Follower Large-Signal Pulse Response
TLC2272 TLC2272A TLC2272M TLC2272AM TLC2274 TLC2274A TLC2274M TLC2274AM slos190_typchar_47.gif Figure 47. Inverting Small-Signal Pulse Response
TLC2272 TLC2272A TLC2272M TLC2272AM TLC2274 TLC2274A TLC2274M TLC2274AM slos190_typchar_49.gif Figure 49. Voltage-Follower Small-Signal Pulse Response
TLC2272 TLC2272A TLC2272M TLC2272AM TLC2274 TLC2274A TLC2274M TLC2274AM slos190_typchar_51.gif Figure 51. Equivalent Input Noise Voltage vs Frequency
TLC2272 TLC2272A TLC2272M TLC2272AM TLC2274 TLC2274A TLC2274M TLC2274AM slos190_typchar_53.gif Figure 53. Integrated Noise Voltage vs Frequency
TLC2272 TLC2272A TLC2272M TLC2272AM TLC2274 TLC2274A TLC2274M TLC2274AM slos190_typchar_55.gif Figure 55. Gain-Bandwidth Product vs Supply Voltage
TLC2272 TLC2272A TLC2272M TLC2272AM TLC2274 TLC2274A TLC2274M TLC2274AM slos190_typchar_57.gif Figure 57. Phase Margin vs Load Capacitance
TLC2272 TLC2272A TLC2272M TLC2272AM TLC2274 TLC2274A TLC2274M TLC2274AM slos190_typchar_2.gif Figure 2. Distribution of TLC2272 Input Offset Voltage
TLC2272 TLC2272A TLC2272M TLC2272AM TLC2274 TLC2274A TLC2274M TLC2274AM slos190_typchar_4.gif Figure 4. Distribution of TLC2274 Input Offset Voltage
TLC2272 TLC2272A TLC2272M TLC2272AM TLC2274 TLC2274A TLC2274M TLC2274AM slos190_typchar_6.gif Figure 6. Input Offset Voltage vs Common-Mode Voltage
TLC2272 TLC2272A TLC2272M TLC2272AM TLC2274 TLC2274A TLC2274M TLC2274AM slos190_typchar_8.gif Figure 8. Distribution of TLC2272 vs
Input Offset Voltage Temperature Coefficient
TLC2272 TLC2272A TLC2272M TLC2272AM TLC2274 TLC2274A TLC2274M TLC2274AM slos190_typchar_10.gif Figure 10. Distribution of TLC2274 vs
Input Offset Voltage Temperature Coefficient
TLC2272 TLC2272A TLC2272M TLC2272AM TLC2274 TLC2274A TLC2274M TLC2274AM slos190_typchar_12.gif Figure 12. Input Voltage vs Supply Voltage
TLC2272 TLC2272A TLC2272M TLC2272AM TLC2274 TLC2274A TLC2274M TLC2274AM slos190_typchar_14.gif Figure 14. High-Level Output Voltage vs
High-Level Output Current
TLC2272 TLC2272A TLC2272M TLC2272AM TLC2274 TLC2274A TLC2274M TLC2274AM slos190_typchar_16.gif Figure 16. Low-Level Output Voltage vs
Low-Level Output Current
TLC2272 TLC2272A TLC2272M TLC2272AM TLC2274 TLC2274A TLC2274M TLC2274AM slos190_typchar_18.gif Figure 18. Maximum Positive Peak Output Voltage vs
Output Current
TLC2272 TLC2272A TLC2272M TLC2272AM TLC2274 TLC2274A TLC2274M TLC2274AM slos190_typchar_20.gif Figure 20. Short-Circuit Output Current vs Supply Voltage
TLC2272 TLC2272A TLC2272M TLC2272AM TLC2274 TLC2274A TLC2274M TLC2274AM slos190_typchar_22.gif Figure 22. Output Voltage vs Differential Input Voltage
TLC2272 TLC2272A TLC2272M TLC2272AM TLC2274 TLC2274A TLC2274M TLC2274AM slos190_typchar_24.gif Figure 24. Large-Signal Differential Voltage Amplification vs
Load Resistance
TLC2272 TLC2272A TLC2272M TLC2272AM TLC2274 TLC2274A TLC2274M TLC2274AM slos190_typchar_26.gif Figure 26. Large-Signal Differential Voltage Amplification and Phase Margin vs Frequency
TLC2272 TLC2272A TLC2272M TLC2272AM TLC2274 TLC2274A TLC2274M TLC2274AM slos190_typchar_28.gif Figure 28. Large-Signal Differential Voltage Amplification vs Free-Air Temperature
TLC2272 TLC2272A TLC2272M TLC2272AM TLC2274 TLC2274A TLC2274M TLC2274AM slos190_typchar_30.gif Figure 30. Output Impedance vs Frequency
TLC2272 TLC2272A TLC2272M TLC2272AM TLC2274 TLC2274A TLC2274M TLC2274AM slos190_typchar_32.gif Figure 32. Common-Mode Rejection Ratio vs
Free-Air Temperature
TLC2272 TLC2272A TLC2272M TLC2272AM TLC2274 TLC2274A TLC2274M TLC2274AM slos190_typchar_34.gif Figure 34. Supply-Voltage Rejection Ratio vs Frequency
TLC2272 TLC2272A TLC2272M TLC2272AM TLC2274 TLC2274A TLC2274M TLC2274AM slos190_typchar_36.gif Figure 36. TLC2272 Supply Current vs Supply Voltage
TLC2272 TLC2272A TLC2272M TLC2272AM TLC2274 TLC2274A TLC2274M TLC2274AM slos190_typchar_38.gif Figure 38. TLC2272 Supply Current vs Free-Air Temperature
TLC2272 TLC2272A TLC2272M TLC2272AM TLC2274 TLC2274A TLC2274M TLC2274AM slos190_typchar_40.gif Figure 40. Slew Rate vs Load Capacitance
TLC2272 TLC2272A TLC2272M TLC2272AM TLC2274 TLC2274A TLC2274M TLC2274AM slos190_typchar_42.gif Figure 42. Inverting Large-Signal Pulse Response
TLC2272 TLC2272A TLC2272M TLC2272AM TLC2274 TLC2274A TLC2274M TLC2274AM slos190_typchar_44.gif Figure 44. Voltage-Follower Large-Signal Pulse Response
TLC2272 TLC2272A TLC2272M TLC2272AM TLC2274 TLC2274A TLC2274M TLC2274AM slos190_typchar_46.gif Figure 46. Inverting Small-Signal Pulse Response
TLC2272 TLC2272A TLC2272M TLC2272AM TLC2274 TLC2274A TLC2274M TLC2274AM slos190_typchar_48.gif Figure 48. Voltage-Follower Small-Signal Pulse Response
TLC2272 TLC2272A TLC2272M TLC2272AM TLC2274 TLC2274A TLC2274M TLC2274AM slos190_typchar_50.gif Figure 50. Equivalent Input Noise Voltage vs Frequency
TLC2272 TLC2272A TLC2272M TLC2272AM TLC2274 TLC2274A TLC2274M TLC2274AM slos190_typchar_52.gif Figure 52. Noise Voltage Over a 10 Second Period
TLC2272 TLC2272A TLC2272M TLC2272AM TLC2274 TLC2274A TLC2274M TLC2274AM slos190_typchar_54.gif Figure 54. Total Harmonic Distortion + Noise vs Frequency
TLC2272 TLC2272A TLC2272M TLC2272AM TLC2274 TLC2274A TLC2274M TLC2274AM slos190_typchar_56.gif Figure 56. Gain-Bandwidth Product vs Free-Air Temperature
TLC2272 TLC2272A TLC2272M TLC2272AM TLC2274 TLC2274A TLC2274M TLC2274AM slos190_typchar_58.gif Figure 58. Gain Margin vs Load Capacitance