SLIS187C June   2021  – March 2022 TLC6A598

PRODUCTION DATA  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Pin Configuration and Functions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Timing Requirements
    7. 6.7 Timing Waveforms
    8. 6.8 Typical Characteristics
  7. Parameter Measurement Information
  8. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1 Serial-In Interface
      2. 8.3.2 Clear Registers
      3. 8.3.3 Output Channels
      4. 8.3.4 Register Clock
      5. 8.3.5 Cascade Through SER OUT
      6. 8.3.6 Output Control
      7. 8.3.7 Clamping Structure
      8. 8.3.8 Protection Functions
        1. 8.3.8.1 Overcurrent Protection
        2. 8.3.8.2 Output Detection
        3. 8.3.8.3 Serial Communication Error
        4. 8.3.8.4 Thermal Shutdown
      9. 8.3.9 Interface
        1. 8.3.9.1 Register Write
        2. 8.3.9.2 Register Read
        3. 8.3.9.3 Shift-Register Communication-Fault Detection
    4. 8.4 Device Functional Modes
      1. 8.4.1 Operation With VCC < 3 V
      2. 8.4.2 Operation With 5.5 V ≤ VCC ≤ 7 V
    5. 8.5 Register Maps
      1. 8.5.1 Configuration Register(Offset=0h)[reset=0h]
      2. 8.5.2 Fault Readback Register(Offset=1h)[reset=0h]
  9. Application and Implementation
    1. 9.1 Application Information
    2. 9.2 Typical Application 1
      1. 9.2.1 Design Requirements
      2. 9.2.2 Detailed Design Procedure
      3. 9.2.3 Application Curves
    3. 9.3 Typical Application 2
      1. 9.3.1 Design Requirements
      2. 9.3.2 Detailed Design Procedure
    4. 9.4 Typical Application 3
      1. 9.4.1 Design Requirements
      2. 9.4.2 Detailed Design Procedure
  10. 10Power Supply Recommendations
  11. 11Layout
    1. 11.1 Layout Guidelines
    2. 11.2 Layout Example
  12. 12Device and Documentation Support
    1. 12.1 Receiving Notification of Documentation Updates
    2. 12.2 Support Resources
    3. 12.3 Trademarks
    4. 12.4 Electrostatic Discharge Caution
    5. 12.5 Glossary
  13. 13Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Layout Guidelines

There are no special layout requirements for the digital signal pins. The only requirement is placing the ceramic bypass capacitors near the corresponding pins.

Maximize the copper coverage on the PCB to increase the thermal conductivity of the board. The major heat-flow path from the package to the ambient is through the copper on the PCB. Maximizing the copper coverage is extremely important when the design does not include heat sinks attached to the PCB on the other side of the package.

Add as many thermal vias as possible directly under the package ground pad to optimize the thermal conductivity of the board.

All thermal vias must be either plated shut or plugged and capped on both sides of the board to prevent solder voids. To ensure reliability and performance, the solder coverage must be at least 85%.