SBASA91 December   2020 TLV320ADC3120

ADVANCE INFORMATION  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Device Comparison Table
  6. Pin Configuration and Functions
  7. Specifications
    1. 7.1  Absolute Maximum Ratings
    2. 7.2  ESD Ratings
    3. 7.3  Recommended Operating Conditions
    4. 7.4  Thermal Information
    5. 7.5  Electrical Characteristics
    6. 7.6  Timing Requirements: I2C Interface
    7. 7.7  Switching Characteristics: I2C Interface
    8. 7.8  Timing Requirements: TDM, I2S or LJ Interface
    9. 7.9  Switching Characteristics: TDM, I2S or LJ Interface
    10. 7.10 Timing Requirements: PDM Digital Microphone Interface
    11. 7.11 Switching Characteristics: PDM Digial Microphone Interface
    12. 7.12 Timing Diagrams
    13. 7.13 Typical Characteristics
  8. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1 Serial Interfaces
        1. 8.3.1.1 Control Serial Interfaces
        2. 8.3.1.2 Audio Serial Interfaces
          1. 8.3.1.2.1 Time Division Multiplexed Audio (TDM) Interface
          2. 8.3.1.2.2 Inter IC Sound (I2S) Interface
          3. 8.3.1.2.3 Left-Justified (LJ) Interface
        3. 8.3.1.3 Using Multiple Devices With Shared Buses
      2. 8.3.2 Phase-Locked Loop (PLL) and Clock Generation
      3. 8.3.3 Input Channel Configurations
      4. 8.3.4 Reference Voltage
      5. 8.3.5 Programmable Microphone Bias
      6. 8.3.6 Signal-Chain Processing
        1. 8.3.6.1 Programmable Channel Gain and Digital Volume Control
        2. 8.3.6.2 Programmable Channel Gain Calibration
        3. 8.3.6.3 Programmable Channel Phase Calibration
        4. 8.3.6.4 Programmable Digital High-Pass Filter
        5. 8.3.6.5 Programmable Digital Biquad Filters
        6. 8.3.6.6 Programmable Channel Summer and Digital Mixer
        7. 8.3.6.7 Configurable Digital Decimation Filters
          1. 8.3.6.7.1 Linear Phase Filters
            1. 8.3.6.7.1.1 Sampling Rate: 8 kHz or 7.35 kHz
            2. 8.3.6.7.1.2 Sampling Rate: 16 kHz or 14.7 kHz
            3. 8.3.6.7.1.3 Sampling Rate: 24 kHz or 22.05 kHz
            4. 8.3.6.7.1.4 Sampling Rate: 32 kHz or 29.4 kHz
            5. 8.3.6.7.1.5 Sampling Rate: 48 kHz or 44.1 kHz
            6. 8.3.6.7.1.6 Sampling Rate: 96 kHz or 88.2 kHz
            7. 8.3.6.7.1.7 Sampling Rate: 192 kHz or 176.4 kHz
            8. 8.3.6.7.1.8 Sampling Rate: 384 kHz or 352.8 kHz
            9. 8.3.6.7.1.9 Sampling Rate 768 kHz or 705.6 kHz
          2. 8.3.6.7.2 Low-Latency Filters
            1. 8.3.6.7.2.1 Sampling Rate: 16 kHz or 14.7 kHz
            2. 8.3.6.7.2.2 Sampling Rate: 24 kHz or 22.05 kHz
            3. 8.3.6.7.2.3 Sampling Rate: 32 kHz or 29.4 kHz
            4. 8.3.6.7.2.4 Sampling Rate: 48 kHz or 44.1 kHz
            5. 8.3.6.7.2.5 Sampling Rate: 96 kHz or 88.2 kHz
            6. 8.3.6.7.2.6 Sampling Rate 192 kHz or 176.4 kHz
          3. 8.3.6.7.3 Ultra-Low Latency Filters
            1. 8.3.6.7.3.1 Sampling Rate: 16 kHz or 14.7 kHz
            2. 8.3.6.7.3.2 Sampling Rate: 24 kHz or 22.05 kHz
            3. 8.3.6.7.3.3 Sampling Rate: 32 kHz or 29.4 kHz
            4. 8.3.6.7.3.4 Sampling Rate: 48 kHz or 44.1 kHz
            5. 8.3.6.7.3.5 Sampling Rate: 96 kHz or 88.2 kHz
            6. 8.3.6.7.3.6 Sampling Rate 192 kHz or 176.4 kHz
            7. 8.3.6.7.3.7 Sampling Rate 384 kHz or 352.8 kHz
      7. 8.3.7 Automatic Gain Controller (AGC)
      8. 8.3.8 Digital PDM Microphone Record Channel
      9. 8.3.9 Interrupts, Status, and Digital I/O Pin Multiplexing
    4. 8.4 Device Functional Modes
      1. 8.4.1 Sleep Mode or Software Shutdown
      2. 8.4.2 Active Mode
      3. 8.4.3 Software Reset
    5. 8.5 Programming
      1. 8.5.1 Control Serial Interfaces
        1. 8.5.1.1 I2C Control Interface
          1. 8.5.1.1.1 General I2C Operation
          2. 8.5.1.1.2 I2C Single-Byte and Multiple-Byte Transfers
            1. 8.5.1.1.2.1 I2C Single-Byte Write
            2. 8.5.1.1.2.2 I2C Multiple-Byte Write
            3. 8.5.1.1.2.3 I2C Single-Byte Read
            4. 8.5.1.1.2.4 I2C Multiple-Byte Read
    6. 8.6 Register Maps
      1. 8.6.1 Device Configuration Registers
        1. 8.6.1.1 TLV320ADC3120 Access Codes
      2. 8.6.2 Page 0 Registers
      3. 8.6.3 Page 1 Registers
      4. 8.6.4 Programmable Coefficient Registers
        1. 8.6.4.1 Programmable Coefficient Registers: Page 2
        2. 8.6.4.2 Programmable Coefficient Registers: Page 3
        3. 8.6.4.3 Programmable Coefficient Registers: Page 4
  9. Application and Implementation
    1. 9.1 Application Information
    2. 9.2 Typical Applications
      1. 9.2.1 Two-Channel Analog Microphone Recording
        1. 9.2.1.1 Design Requirements
        2. 9.2.1.2 Detailed Design Procedure
          1. 9.2.1.2.1 Example Device Register Configuration Script for EVM Setup
        3. 9.2.1.3 Application Curves
      2. 9.2.2 Four-Channel Digital PDM Microphone Recording
        1. 9.2.2.1 Design Requirements
        2. 9.2.2.2 Detailed Design Procedure
          1. 9.2.2.2.1 Example Device Register Configuration Script for EVM Setup
  10. 10Power Supply Recommendations
  11. 11Layout
    1. 11.1 Layout Guidelines
    2. 11.2 Layout Example
  12. 12Device and Documentation Support
    1. 12.1 Documentation Support
    2. 12.2 Receiving Notification of Documentation Updates
    3. 12.3 Support Resources
    4. 12.4 Trademarks
    5. 12.5 Electrostatic Discharge Caution
    6. 12.6 Glossary

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Using Multiple Devices With Shared Buses

The device has many supported features and flexible options that can be used in the system to seamlessly connect the TLV320ADC3120 and any other audio device by sharing a single common I2C control bus and an audio serial interface bus. This architecture enables multiple applications to be applied to a system that require a microphone array for beam-forming operations, audio conferencing, noise cancellation, and so forth. Figure 8-13 shows a diagram of TLV320ADC3120 and TLV320ADCx140 devices in a configuration where the control and audio data buses are shared.

GUID-20201217-CA0I-9M7B-JBTM-V8RZTGD9TF1Z-low.gif Figure 8-13 Multiple Devices With Shared Control and Audio Data Buses

The TLV320ADC3120 consists of the following features to enable seamless connection and interaction of multiple devices using a shared bus:

  • I2C broadcast simultaneously writes to (or triggers) all TLV320ADC3120 and TLV320ADCx140 devices
  • Supports up to 64 configuration output channel slots for the audio serial interface
  • Tri-state feature (with enable and disable) for the unused audio data slots of the device
  • Supports a bus-holder feature (with enable and disable) to keep the last driven value on the audio bus
  • The GPIO1 or GPOx pin can be configured as a secondary output data lane for the audio serial interface
  • The GPIO1 or GPIx pin can be used in a daisy-chain configuration of multiple devices
  • Supports one BCLK cycle data latching timing to relax the timing requirement for the high-speed interface
  • Programmable master and slave options for the audio serial interface
  • Ability to synchronize the multiple devices for the simultaneous sampling requirement across devices
See the Multiple TLV320ADCx140 Devices With a Shared TDM and I2C Bus application report for further details.