SBOSAH3 April   2025 TMCS1148

ADVANCE INFORMATION  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Device Comparison
  6. Pin Configuration and Functions
  7. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Power Ratings
    6. 6.6 Insulation Specifications
    7. 6.7 Safety Limiting Values
    8. 6.8 Electrical Characteristics
  8. Typical Characteristics
    1. 7.1 Insulation Characteristics Curves
  9. Parameter Measurement Information
    1. 8.1 Accuracy Parameters
      1. 8.1.1 Sensitivity Error
      2. 8.1.2 Offset Error and Offset Error Drift
      3. 8.1.3 Nonlinearity Error
      4. 8.1.4 Power Supply Rejection Ratio
      5. 8.1.5 Common-Mode Rejection Ratio
      6. 8.1.6 External Magnetic Field Errors
    2. 8.2 Transient Response Parameters
      1. 8.2.1 CMTI, Common-Mode Transient Immunity
    3. 8.3 Safe Operating Area
      1. 8.3.1 Continuous DC or Sinusoidal AC Current
      2. 8.3.2 Repetitive Pulsed Current SOA
      3. 8.3.3 Single Event Current Capability
  10. Detailed Description
    1. 9.1 Overview
    2. 9.2 Functional Block Diagram
    3. 9.3 Feature Description
      1. 9.3.1 Current Input
      2. 9.3.2 Ambient Field Rejection
      3. 9.3.3 High-Precision Signal Chain
        1. 9.3.3.1 Temperature Stability
        2. 9.3.3.2 Lifetime and Environmental Stability
      4. 9.3.4 Internal Reference Voltage
      5. 9.3.5 Current-Sensing Measurable Ranges
      6. 9.3.6 Overcurrent Detection
        1. 9.3.6.1 Setting The User Configurable Overcurrent Threshold
          1. 9.3.6.1.1 Setting Overcurrent Threshold Using Power Supply Voltage
          2. 9.3.6.1.2 Setting Overcurrent Threshold Using Internal Reference Voltage
          3. 9.3.6.1.3 Setting Overcurrent Threshold Example
        2. 9.3.6.2 Overcurrent Output Response
    4. 9.4 Device Functional Modes
      1. 9.4.1 Power-Down Behavior
  11. 10Application and Implementation
    1. 10.1 Application Information
      1. 10.1.1 Total Error Calculation Examples
        1. 10.1.1.1 Room-Temperature Error Calculations
        2. 10.1.1.2 Full-Temperature Range Error Calculations
    2. 10.2 Typical Application
      1. 10.2.1 Design Requirements
      2. 10.2.2 Detailed Design Procedure
      3. 10.2.3 Application Curve
    3. 10.3 Power Supply Recommendations
    4. 10.4 Layout
      1. 10.4.1 Layout Guidelines
      2. 10.4.2 Layout Example
  12. 11Device and Documentation Support
    1. 11.1 Device Nomenclature
    2. 11.2 Device Support
      1. 11.2.1 Development Support
    3. 11.3 Documentation Support
      1. 11.3.1 Related Documentation
    4. 11.4 Receiving Notification of Documentation Updates
    5. 11.5 Support Resources
    6. 11.6 Trademarks
    7. 11.7 Electrostatic Discharge Caution
    8. 11.8 Glossary
  13. 12Revision History
  14. 13Mechanical, Packaging, and Orderable Information
    1. 13.1 Mechanical Data
    2.     PACKAGING INFORMATION
    3. 13.2 Tape and Reel Information

Refer to the PDF data sheet for device specific package drawings

Mechanical Data (Package|Pins)
  • DVF|10
Thermal pad, mechanical data (Package|Pins)

Description

The TMCS1148 is a galvanically isolated Hall-effect current sensor with industry leading isolation and accuracy. An output voltage proportional to the input current is provided with excellent linearity and low drift at all sensitivity options. Precision signal conditioning circuitry with built-in drift compensation is capable of less than 1.5% maximum sensitivity error over temperature and lifetime with no system level calibration, or less than 1% maximum sensitivity error including both lifetime and temperature drift with a one-time calibration at room temperature.

AC or DC input current flows through an internal conductor generating a magnetic field measured by integrated, on-chip, Hall-effect sensors. Core-less construction eliminates the need for magnetic concentrators. Differential Hall sensors reject interference from stray external magnetic fields. Low conductor resistance increases measurable current ranges up to ±160A while minimizing power loss and easing thermal dissipation requirements. Insulation capable of withstanding 5kVRMS, coupled with a minimum of 8.8mm creepage and clearance, provides high levels of reliable lifetime reinforced working voltage. Integrated shielding enables excellent common-mode rejection and transient immunity.

Fixed sensitivity allows the device to operate from a single 3V to 5.5V power supply, eliminating ratiometry errors and improving supply noise rejection.

Package Information
PART NUMBER PACKAGE(1) PACKAGE SIZE(2)
TMCS1148 DVF (SOIC, 10) 10.9mm × 12.7mm
For all available packages, see Section 13.
The package size (length × width) is a nominal value and includes pins, where applicable.
TMCS1148 Typical
          Application Typical Application