SLOS887F September   2014  – June 2022 TMP112-Q1

PRODUCTION DATA  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Description (continued)
  6. Pin Configuration and Functions
  7. Specifications
    1. 7.1 Absolute Maximum Ratings
    2. 7.2 ESD Ratings
    3. 7.3 Recommended Operating Conditions
    4. 7.4 Thermal Information
    5. 7.5 Electrical Characteristics
    6. 7.6 Specifications for User-Calibrated Systems
    7. 7.7 Timing Requirements
    8. 7.8 Typical Characteristics
  8. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1 Digital Temperature Output
      2. 8.3.2 Serial Interface
        1. 8.3.2.1 Bus Overview
        2. 8.3.2.2 Serial Bus Address
        3. 8.3.2.3 Writing and Reading Operation
        4. 8.3.2.4 Target Mode Operation
          1. 8.3.2.4.1 Target Receiver Mode
          2. 8.3.2.4.2 Target Transmitter Mode
        5. 8.3.2.5 SMBus Alert Function
        6. 8.3.2.6 General Call
        7. 8.3.2.7 High-Speed (Hs) Mode
        8. 8.3.2.8 Timeout Function
        9. 8.3.2.9 Timing Diagrams
          1. 8.3.2.9.1 Two-Wire Timing Diagrams
    4. 8.4 Device Functional Modes
      1. 8.4.1 Continuous-Conversion Mode
      2. 8.4.2 Extended Mode (EM)
      3. 8.4.3 Shutdown Mode (SD)
      4. 8.4.4 One-Shot and Conversion Ready Mode (OS)
      5. 8.4.5 Thermostat Mode (TM)
        1. 8.4.5.1 Comparator Mode (TM = 0)
        2. 8.4.5.2 Interrupt Mode (TM = 1)
    5. 8.5 Programming
      1. 8.5.1 Pointer Register
      2. 8.5.2 Temperature Register
      3. 8.5.3 Configuration Register
        1. 8.5.3.1 Shutdown Mode (SD)
        2. 8.5.3.2 Thermostat Mode (TM)
        3. 8.5.3.3 Polarity (POL)
        4. 8.5.3.4 Fault Queue (F1/F0)
        5. 8.5.3.5 Converter Resolution (R1 and R0)
        6. 8.5.3.6 One-Shot (OS)
        7. 8.5.3.7 Extended Mode (EM)
        8. 8.5.3.8 Alert (AL)
        9. 8.5.3.9 Conversion Rate (CR)
      4. 8.5.4 High- and Low-Limit Registers
  9. Application and Implementation
    1. 9.1 Application Information
      1. 9.1.1 Calibrating for Improved Accuracy
        1. 9.1.1.1 Example 1: Finding Worst-Case Accuracy From –15°C to 50°C
        2. 9.1.1.2 Example 2: Finding Worst-Case Accuracy From 25°C to 100°C
      2. 9.1.2 Using The Slope Specifications With a 1-Point Calibration
        1. 9.1.2.1 Power Supply-Level Contribution to Accuracy
    2. 9.2 Typical Application
      1. 9.2.1 Design Requirements
      2. 9.2.2 Detailed Design Procedure
      3. 9.2.3 Application Curve
  10. 10Power Supply Recommendations
  11. 11Layout
    1. 11.1 Layout Guidelines
    2. 11.2 Layout Example
  12. 12Device and Documentation Support
    1. 12.1 Documentation Support
      1. 12.1.1 Related Documentation
    2. 12.2 Receiving Notification of Documentation Updates
    3. 12.3 Community Resources
    4. 12.4 Trademarks
  13. 13Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Bus Overview

The device that initiates the transfer is called a controller, and the devices controlled by the controller are targets. The bus must be controlled by a controller device that generates the serial clock (SCL), controls the bus access, and generates the START and STOP conditions.

To address a specific device, a START condition is initiated, indicated by pulling the data-line (SDA) from a high- to low-logic level when the SCL pin is high. All targets on the bus shift in the target address byte on the rising edge of the clock, with the last bit indicating whether a read or write operation is intended. During the ninth clock pulse, the target being addressed responds to the controller by generating an acknowledge and pulling the SDA pin low.

A data transfer is then initiated and sent over eight clock pulses followed by an acknowledge bit. During the data transfer the SDA pin must remain stable when the SCL pin is high, because any change in the SDA pin when the SCL pin is high is interpreted as a START or STOP signal.

When all data have been transferred, the controller generates a STOP condition indicated by pulling the SDA pin from low to high when the SCL pin is high.