SPRS584N April   2009  – June 2020 TMS320F28030 , TMS320F28031 , TMS320F28032 , TMS320F28033 , TMS320F28034 , TMS320F28035

PRODUCTION DATA.  

  1. 1Device Overview
    1. 1.1 Features
    2. 1.2 Applications
    3. 1.3 Description
    4. 1.4 Functional Block Diagram
  2. 2Revision History
  3. 3Device Comparison
    1. 3.1 Related Products
  4. 4Terminal Configuration and Functions
    1. 4.1 Pin Diagrams
    2. 4.2 Signal Descriptions
      1. Table 4-1 Signal Descriptions
  5. 5Specifications
    1. 5.1  Absolute Maximum Ratings
    2. 5.2  ESD Ratings – Automotive
    3. 5.3  ESD Ratings – Commercial
    4. 5.4  Recommended Operating Conditions
    5. 5.5  Power Consumption Summary
      1. Table 5-1 TMS320F2803x Current Consumption at 60-MHz SYSCLKOUT
      2. 5.5.1     Reducing Current Consumption
      3. 5.5.2     Current Consumption Graphs (VREG Enabled)
    6. 5.6  Electrical Characteristics
    7. 5.7  Thermal Resistance Characteristics
      1. 5.7.1 PN Package
      2. 5.7.2 PAG Package
      3. 5.7.3 RSH Package
    8. 5.8  Thermal Design Considerations
    9. 5.9  JTAG Debug Probe Connection Without Signal Buffering for the MCU
    10. 5.10 Parameter Information
      1. 5.10.1 Timing Parameter Symbology
      2. 5.10.2 General Notes on Timing Parameters
    11. 5.11 Test Load Circuit
    12. 5.12 Power Sequencing
      1. Table 5-3 Reset (XRS) Timing Requirements
      2. Table 5-4 Reset (XRS) Switching Characteristics
    13. 5.13 Clock Specifications
      1. 5.13.1 Device Clock Table
        1. Table 5-5 2803x Clock Table and Nomenclature (60-MHz Devices)
        2. Table 5-6 Device Clocking Requirements/Characteristics
        3. Table 5-7 Internal Zero-Pin Oscillator (INTOSC1/INTOSC2) Characteristics
      2. 5.13.2 Clock Requirements and Characteristics
        1. Table 5-8  XCLKIN Timing Requirements – PLL Enabled
        2. Table 5-9  XCLKIN Timing Requirements – PLL Disabled
        3. Table 5-10 XCLKOUT Switching Characteristics (PLL Bypassed or Enabled)
    14. 5.14 Flash Timing
      1. Table 5-11 Flash/OTP Endurance for T Temperature Material
      2. Table 5-12 Flash/OTP Endurance for S Temperature Material
      3. Table 5-13 Flash/OTP Endurance for Q Temperature Material
      4. Table 5-14 Flash Parameters at 60-MHz SYSCLKOUT
      5. Table 5-15 Flash/OTP Access Timing
      6. Table 5-16 Flash Data Retention Duration
  6. 6Detailed Description
    1. 6.1 Overview
      1. 6.1.1  CPU
      2. 6.1.2  Control Law Accelerator (CLA)
      3. 6.1.3  Memory Bus (Harvard Bus Architecture)
      4. 6.1.4  Peripheral Bus
      5. 6.1.5  Real-Time JTAG and Analysis
      6. 6.1.6  Flash
      7. 6.1.7  M0, M1 SARAMs
      8. 6.1.8  L0 SARAM, and L1, L2, and L3 DPSARAMs
      9. 6.1.9  Boot ROM
        1. 6.1.9.1 Emulation Boot
        2. 6.1.9.2 GetMode
        3. 6.1.9.3 Peripheral Pins Used by the Bootloader
      10. 6.1.10 Security
      11. 6.1.11 Peripheral Interrupt Expansion (PIE) Block
      12. 6.1.12 External Interrupts (XINT1–XINT3)
      13. 6.1.13 Internal Zero Pin Oscillators, Oscillator, and PLL
      14. 6.1.14 Watchdog
      15. 6.1.15 Peripheral Clocking
      16. 6.1.16 Low-power Modes
      17. 6.1.17 Peripheral Frames 0, 1, 2, 3 (PFn)
      18. 6.1.18 General-Purpose Input/Output (GPIO) Multiplexer
      19. 6.1.19 32-Bit CPU-Timers (0, 1, 2)
      20. 6.1.20 Control Peripherals
      21. 6.1.21 Serial Port Peripherals
    2. 6.2 Memory Maps
    3. 6.3 Register Maps
    4. 6.4 Device Emulation Registers
    5. 6.5 VREG/BOR/POR
      1. 6.5.1 On-chip Voltage Regulator (VREG)
        1. 6.5.1.1 Using the On-chip VREG
        2. 6.5.1.2 Disabling the On-chip VREG
      2. 6.5.2 On-chip Power-On Reset (POR) and Brown-Out Reset (BOR) Circuit
    6. 6.6 System Control
      1. 6.6.1 Internal Zero Pin Oscillators
      2. 6.6.2 Crystal Oscillator Option
      3. 6.6.3 PLL-Based Clock Module
      4. 6.6.4 Loss of Input Clock (NMI Watchdog Function)
      5. 6.6.5 CPU Watchdog Module
    7. 6.7 Low-power Modes Block
    8. 6.8 Interrupts
      1. 6.8.1 External Interrupts
        1. 6.8.1.1 External Interrupt Electrical Data/Timing
          1. Table 6-22 External Interrupt Timing Requirements
          2. Table 6-23 External Interrupt Switching Characteristics
    9. 6.9 Peripherals
      1. 6.9.1  Control Law Accelerator (CLA) Overview
      2. 6.9.2  Analog Block
        1. 6.9.2.1 Analog-to-Digital Converter (ADC)
          1. 6.9.2.1.1 Features
          2. 6.9.2.1.2 ADC Start-of-Conversion Electrical Data/Timing
            1. Table 6-28 External ADC Start-of-Conversion Switching Characteristics
          3. 6.9.2.1.3 On-Chip Analog-to-Digital Converter (ADC) Electrical Data/Timing
            1. Table 6-29  ADC Electrical Characteristics
            2. Table 6-30  ADC Power Modes
            3. 6.9.2.1.3.1 Internal Temperature Sensor
              1. Table 6-31 Temperature Sensor Coefficient
            4. 6.9.2.1.3.2 ADC Power-Up Control Bit Timing
              1. Table 6-32 ADC Power-Up Delays
            5. 6.9.2.1.3.3 ADC Sequential and Simultaneous Timings
        2. 6.9.2.2 ADC MUX
        3. 6.9.2.3 Comparator Block
          1. 6.9.2.3.1 On-Chip Comparator/DAC Electrical Data/Timing
            1. Table 6-34 Electrical Characteristics of the Comparator/DAC
      3. 6.9.3  Detailed Descriptions
      4. 6.9.4  Serial Peripheral Interface (SPI) Module
        1. 6.9.4.1 SPI Master Mode Electrical Data/Timing
          1. Table 6-37 SPI Master Mode External Timing (Clock Phase = 0)
          2. Table 6-38 SPI Master Mode External Timing (Clock Phase = 1)
        2. 6.9.4.2 SPI Slave Mode Electrical Data/Timing
          1. Table 6-39 SPI Slave Mode External Timing (Clock Phase = 0)
          2. Table 6-40 SPI Slave Mode External Timing (Clock Phase = 1)
      5. 6.9.5  Serial Communications Interface (SCI) Module
      6. 6.9.6  Local Interconnect Network (LIN)
      7. 6.9.7  Enhanced Controller Area Network (eCAN) Module
      8. 6.9.8  Inter-Integrated Circuit (I2C)
        1. 6.9.8.1 I2C Electrical Data/Timing
          1. Table 6-46 I2C Timing Requirements
          2. Table 6-47 I2C Switching Characteristics
      9. 6.9.9  Enhanced PWM Modules (ePWM1/2/3/4/5/6/7)
        1. 6.9.9.1 ePWM Electrical Data/Timing
          1. Table 6-50 ePWM Timing Requirements
          2. Table 6-51 ePWM Switching Characteristics
        2. 6.9.9.2 Trip-Zone Input Timing
          1. Table 6-52 Trip-Zone Input Timing Requirements
      10. 6.9.10 High-Resolution PWM (HRPWM)
        1. 6.9.10.1 HRPWM Electrical Data/Timing
          1. Table 6-53 High-Resolution PWM Characteristics
      11. 6.9.11 Enhanced Capture Module (eCAP1)
        1. 6.9.11.1 eCAP Electrical Data/Timing
          1. Table 6-55 Enhanced Capture (eCAP) Timing Requirement
          2. Table 6-56 eCAP Switching Characteristics
      12. 6.9.12 High-Resolution Capture (HRCAP) Module
        1. 6.9.12.1 HRCAP Electrical Data/Timing
          1. Table 6-58 High-Resolution Capture (HRCAP) Timing Requirements
      13. 6.9.13 Enhanced Quadrature Encoder Pulse (eQEP)
        1. 6.9.13.1 eQEP Electrical Data/Timing
          1. Table 6-60 Enhanced Quadrature Encoder Pulse (eQEP) Timing Requirements
          2. Table 6-61 eQEP Switching Characteristics
      14. 6.9.14 JTAG Port
      15. 6.9.15 General-Purpose Input/Output (GPIO) MUX
        1. 6.9.15.1 GPIO Electrical Data/Timing
          1. 6.9.15.1.1 GPIO - Output Timing
            1. Table 6-67 General-Purpose Output Switching Characteristics
          2. 6.9.15.1.2 GPIO - Input Timing
            1. Table 6-68 General-Purpose Input Timing Requirements
          3. 6.9.15.1.3 Sampling Window Width for Input Signals
          4. 6.9.15.1.4 Low-Power Mode Wakeup Timing
            1. Table 6-69 IDLE Mode Timing Requirements
            2. Table 6-70 IDLE Mode Switching Characteristics
            3. Table 6-71 STANDBY Mode Timing Requirements
            4. Table 6-72 STANDBY Mode Switching Characteristics
            5. Table 6-73 HALT Mode Timing Requirements
            6. Table 6-74 HALT Mode Switching Characteristics
  7. 7Applications, Implementation, and Layout
    1. 7.1 TI Reference Design
  8. 8Device and Documentation Support
    1. 8.1 Device and Development Support Tool Nomenclature
    2. 8.2 Tools and Software
    3. 8.3 Documentation Support
    4. 8.4 Related Links
    5. 8.5 Support Resources
    6. 8.6 Trademarks
    7. 8.7 Electrostatic Discharge Caution
    8. 8.8 Glossary
  9. 9Mechanical, Packaging, and Orderable Information
    1. 9.1 Packaging Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Memory Maps

In Figure 6-1 through Figure 6-4, the following apply:

  • Memory blocks are not to scale.
  • Peripheral Frame 0, Peripheral Frame 1, Peripheral Frame 2, and Peripheral Frame 3 memory maps are restricted to data memory only. A user program cannot access these memory maps in program space.
  • Protected means the order of Write-followed-by-Read operations is preserved rather than the pipeline order.
  • Certain memory ranges are EALLOW protected against spurious writes after configuration.
  • Locations 0x3D7C80 to 0x3D7CC0 contain the internal oscillator and ADC calibration routines. These locations are not programmable by the user.

TMS320F28030 TMS320F28031 TMS320F28032 TMS320F28033 TMS320F28034 TMS320F28035 bigflash_mm_prs584.gif
CLA-specific registers and RAM apply to the 28035 device only.
Memory locations 0x3D7E80-0x3D7EAF are reserved in TMX silicon.
Figure 6-1 28034/28035 Memory Map
TMS320F28030 TMS320F28031 TMS320F28032 TMS320F28033 TMS320F28034 TMS320F28035 smflash_mm_prs584.gif
CLA-specific registers and RAM apply to the 28033 device only.
Memory locations 0x3D7E80-0x3D7EAF are reserved in TMX silicon.
Figure 6-2 28032/28033 Memory Map
TMS320F28030 TMS320F28031 TMS320F28032 TMS320F28033 TMS320F28034 TMS320F28035 f28031_mm_prs584.gif
Memory locations 0x3D7E80-0x3D7EAF are reserved in TMX silicon.
Figure 6-3 28031 Memory Map
TMS320F28030 TMS320F28031 TMS320F28032 TMS320F28033 TMS320F28034 TMS320F28035 f28030_mm_prs584.gif
Memory locations 0x3D7E80-0x3D7EAF are reserved in TMX silicon.
Figure 6-4 28030 Memory Map

Table 6-3 Addresses of Flash Sectors in F28034/28035

ADDRESS RANGE PROGRAM AND DATA SPACE
0x3E 8000 to 0x3E 9FFF Sector H (8K × 16)
0x3E A000 to 0x3E BFFF Sector G (8K × 16)
0x3E C000 to 0x3E DFFF Sector F (8K × 16)
0x3E E000 to 0x3E FFFF Sector E (8K × 16)
0x3F 0000 to 0x3F 1FFF Sector D (8K × 16)
0x3F 2000 to 0x3F 3FFF Sector C (8K × 16)
0x3F 4000 to 0x3F 5FFF Sector B (8K × 16)
0x3F 6000 to 0x3F 7F7F Sector A (8K × 16)
0x3F 7F80 to 0x3F 7FF5 Program to 0x0000 when using the
Code Security Module
0x3F 7FF6 to 0x3F 7FF7 Boot-to-Flash Entry Point
(program branch instruction here)
0x3F 7FF8 to 0x3F 7FFF Security Password (128-Bit)
(Do not program to all zeros)

Table 6-4 Addresses of Flash Sectors in F28031/28032/28033

ADDRESS RANGE PROGRAM AND DATA SPACE
0x3F 0000 to 0x3F 0FFF Sector H (4K × 16)
0x3F 1000 to 0x3F 1FFF Sector G (4K × 16)
0x3F 2000 to 0x3F 2FFF Sector F (4K × 16)
0x3F 3000 to 0x3F 3FFF Sector E (4K × 16)
0x3F 4000 to 0x3F 4FFF Sector D (4K × 16)
0x3F 5000 to 0x3F 5FFF Sector C (4K × 16)
0x3F 6000 to 0x3F 6FFF Sector B (4K × 16)
0x3F 7000 to 0x3F 7F7F Sector A (4K × 16)
0x3F 7F80 to 0x3F 7FF5 Program to 0x0000 when using the
Code Security Module
0x3F 7FF6 to 0x3F 7FF7 Boot-to-Flash Entry Point
(program branch instruction here)
0x3F 7FF8 to 0x3F 7FFF Security Password (128-Bit)
(Do not program to all zeros)

Table 6-5 Addresses of Flash Sectors in F28030

ADDRESS RANGE PROGRAM AND DATA SPACE
0x3F 4000 to 0x3F 4FFF Sector D (4K × 16)
0x3F 5000 to 0x3F 5FFF Sector C (4K × 16)
0x3F 6000 to 0x3F 6FFF Sector B (4K × 16)
0x3F 7000 to 0x3F 7F7F Sector A (4K × 16)
0x3F 7F80 to 0x3F 7FF5 Program to 0x0000 when using the
Code Security Module
0x3F 7FF6 to 0x3F 7FF7 Boot-to-Flash Entry Point
(program branch instruction here)
0x3F 7FF8 to 0x3F 7FFF Security Password (128-Bit)
(Do not program to all zeros)

NOTE

  • When the code-security passwords are programmed, all addresses from 0x3F 7F80 to 0x3F 7FF5 cannot be used as program code or data. These locations must be programmed to 0x0000.
  • If the code security feature is not used, addresses 0x3F 7F80 to 0x3F 7FEF may be used for code or data. Addresses 0x3F 7FF0 to 0x3F 7FF5 are reserved for data and should not contain program code.

Table 6-6 shows how to handle these memory locations.

Table 6-6 Impact of Using the Code Security Module

ADDRESS FLASH
CODE SECURITY ENABLED CODE SECURITY DISABLED
0x3F 7F80 to 0x3F 7FEF Fill with 0x0000 Application code and data
0x3F 7FF0 to 0x3F 7FF5 Reserved for data only

Peripheral Frame 1, Peripheral Frame 2, and Peripheral Frame 3 are grouped together to enable these blocks to be write/read peripheral block protected. The protected mode makes sure that all accesses to these blocks happen as written. Because of the pipeline, a write immediately followed by a read to different memory locations, will appear in reverse order on the memory bus of the CPU. This can cause problems in certain peripheral applications where the user expected the write to occur first (as written). The CPU supports a block protection mode where a region of memory can be protected so that operations occur as written (the penalty is extra cycles are added to align the operations). This mode is programmable and by default, it protects the selected zones.

The wait states for the various spaces in the memory map area are listed in Table 6-7.

Table 6-7 Wait States

AREA WAIT STATES (CPU) COMMENTS
M0 and M1 SARAMs 0-wait Fixed
Peripheral Frame 0 0-wait
Peripheral Frame 1 0-wait (writes) Cycles can be extended by peripheral generated ready.
2-wait (reads) Back-to-back write operations to Peripheral Frame 1 registers will incur a 1-cycle stall (1-cycle delay).
Peripheral Frame 2 0-wait (writes) Fixed. Cycles cannot be extended by the peripheral.
2-wait (reads)
Peripheral Frame 3 0-wait (writes) Assumes no conflict between CPU and CLA.
2-wait (reads) Cycles can be extended by peripheral-generated ready.
L0 SARAM 0-wait data and program Assumes no CPU conflicts
L1 SARAM 0-wait data and program Assumes no CPU conflicts
L2 SARAM 0-wait data and program Assumes no CPU conflicts
L3 SARAM 0-wait data and program Assumes no CPU conflicts
OTP Programmable Programmed through the Flash registers.
1-wait minimum 1-wait is minimum number of wait states allowed.
FLASH Programmable Programmed through the Flash registers.
0-wait Paged min
1-wait Random min
Random ≥ Paged
FLASH Password 16-wait fixed Wait states of password locations are fixed.
Boot-ROM 0-wait