SPRS698G November   2010  – May 2018 TMS320F28062 , TMS320F28063 , TMS320F28064 , TMS320F28065 , TMS320F28066 , TMS320F28067 , TMS320F28069

PRODUCTION DATA.  

  1. 1Device Overview
    1. 1.1 Features
    2. 1.2 Applications
    3. 1.3 Description
    4. 1.4 Functional Block Diagram
    5. 1.5 System Device Diagram
  2. 2Revision History
  3. 3Device Comparison
    1. 3.1 Related Products
  4. 4Terminal Configuration and Functions
    1. 4.1 Pin Diagrams
    2. 4.2 Signal Descriptions
      1. Table 4-1 Signal Descriptions
  5. 5Specifications
    1. 5.1  Absolute Maximum Ratings
    2. 5.2  ESD Ratings – Commercial
    3. 5.3  ESD Ratings – Automotive
    4. 5.4  Recommended Operating Conditions
    5. 5.5  Power Consumption Summary
      1. Table 5-1 TMS320F2806x Current Consumption at 90-MHz SYSCLKOUT
      2. 5.5.1      Reducing Current Consumption
      3. 5.5.2      Current Consumption Graphs (VREG Enabled)
    6. 5.6  Electrical Characteristics
    7. 5.7  Thermal Resistance Characteristics
      1. 5.7.1 PFP PowerPAD Package
      2. 5.7.2 PZP PowerPAD Package
      3. 5.7.3 PN Package
      4. 5.7.4 PZ Package
    8. 5.8  Thermal Design Considerations
    9. 5.9  Emulator Connection Without Signal Buffering for the MCU
    10. 5.10 Parameter Information
      1. 5.10.1 Timing Parameter Symbology
      2. 5.10.2 General Notes on Timing Parameters
    11. 5.11 Test Load Circuit
    12. 5.12 Power Sequencing
      1. Table 5-3 Reset (XRS) Timing Requirements
      2. Table 5-4 Reset (XRS) Switching Characteristics
    13. 5.13 Clock Specifications
      1. 5.13.1 Device Clock Table
        1. Table 5-5 2806x Clock Table and Nomenclature (90-MHz Devices)
        2. Table 5-6 Device Clocking Requirements/Characteristics
        3. Table 5-7 Internal Zero-Pin Oscillator (INTOSC1/INTOSC2) Characteristics
      2. 5.13.2 Clock Requirements and Characteristics
        1. Table 5-8   XCLKIN Timing Requirements – PLL Enabled
        2. Table 5-9   XCLKIN Timing Requirements – PLL Disabled
        3. Table 5-10 XCLKOUT Switching Characteristics (PLL Bypassed or Enabled)
    14. 5.14 Flash Timing
      1. Table 5-11 Flash/OTP Endurance for T Temperature Material
      2. Table 5-12 Flash/OTP Endurance for S Temperature Material
      3. Table 5-13 Flash/OTP Endurance for Q Temperature Material
      4. Table 5-14 Flash Parameters at 90-MHz SYSCLKOUT
      5. Table 5-15 Flash/OTP Access Timing
      6. Table 5-16 Flash Data Retention Duration
  6. 6Detailed Description
    1. 6.1 Overview
      1. 6.1.1  CPU
      2. 6.1.2  Control Law Accelerator (CLA)
      3. 6.1.3  Viterbi, Complex Math, CRC Unit (VCU)
      4. 6.1.4  Memory Bus (Harvard Bus Architecture)
      5. 6.1.5  Peripheral Bus
      6. 6.1.6  Real-Time JTAG and Analysis
      7. 6.1.7  Flash
      8. 6.1.8  M0, M1 SARAMs
      9. 6.1.9  L4 SARAM, and L0, L1, L2, L3, L5, L6, L7, and L8 DPSARAMs
      10. 6.1.10 Boot ROM
        1. 6.1.10.1 Emulation Boot
        2. 6.1.10.2 GetMode
        3. 6.1.10.3 Peripheral Pins Used by the Bootloader
      11. 6.1.11 Security
      12. 6.1.12 Peripheral Interrupt Expansion (PIE) Block
      13. 6.1.13 External Interrupts (XINT1 to XINT3)
      14. 6.1.14 Internal Zero Pin Oscillators, Oscillator, and PLL
      15. 6.1.15 Watchdog
      16. 6.1.16 Peripheral Clocking
      17. 6.1.17 Low-power Modes
      18. 6.1.18 Peripheral Frames 0, 1, 2, 3 (PFn)
      19. 6.1.19 General-Purpose Input/Output (GPIO) Multiplexer
      20. 6.1.20 32-Bit CPU-Timers (0, 1, 2)
      21. 6.1.21 Control Peripherals
      22. 6.1.22 Serial Port Peripherals
    2. 6.2 Memory Maps
    3. 6.3 Register Maps
    4. 6.4 Device Emulation Registers
    5. 6.5 VREG, BOR, POR
      1. 6.5.1 On-chip VREG
        1. 6.5.1.1 Using the On-chip VREG
        2. 6.5.1.2 Disabling the On-chip VREG
      2. 6.5.2 On-chip Power-On Reset (POR) and Brownout Reset (BOR) Circuit
    6. 6.6 System Control
      1. 6.6.1 Internal Zero Pin Oscillators
      2. 6.6.2 Crystal Oscillator Option
      3. 6.6.3 PLL-Based Clock Module
      4. 6.6.4 USB and HRCAP PLL Module (PLL2)
      5. 6.6.5 Loss of Input Clock (NMI Watchdog Function)
      6. 6.6.6 CPU-Watchdog Module
    7. 6.7 Low-power Modes Block
    8. 6.8 Interrupts
      1. 6.8.1 External Interrupts
        1. 6.8.1.1 External Interrupt Electrical Data/Timing
          1. Table 6-20 External Interrupt Timing Requirements
          2. Table 6-21 External Interrupt Switching Characteristics
    9. 6.9 Peripherals
      1. 6.9.1  CLA Overview
      2. 6.9.2  Analog Block
        1. 6.9.2.1 Analog-to-Digital Converter (ADC)
          1. 6.9.2.1.1 Features
          2. 6.9.2.1.2 ADC Start-of-Conversion Electrical Data/Timing
            1. Table 6-26 External ADC Start-of-Conversion Switching Characteristics
          3. 6.9.2.1.3 On-Chip Analog-to-Digital Converter (ADC) Electrical Data/Timing
            1. Table 6-27 ADC Electrical Characteristics
            2. Table 6-28 ADC Power Modes
            3. 6.9.2.1.3.1 Internal Temperature Sensor
              1. Table 6-29 Temperature Sensor Coefficient
            4. 6.9.2.1.3.2 ADC Power-Up Control Bit Timing
              1. Table 6-30 ADC Power-Up Delays
            5. 6.9.2.1.3.3 ADC Sequential and Simultaneous Timings
        2. 6.9.2.2 ADC MUX
        3. 6.9.2.3 Comparator Block
          1. 6.9.2.3.1 On-Chip Comparator/DAC Electrical Data/Timing
            1. Table 6-32 Electrical Characteristics of the Comparator/DAC
      3. 6.9.3  Detailed Descriptions
      4. 6.9.4  Serial Peripheral Interface (SPI) Module
        1. 6.9.4.1 SPI Master Mode Electrical Data/Timing
          1. Table 6-35 SPI Master Mode External Timing (Clock Phase = 0)
          2. Table 6-36 SPI Master Mode External Timing (Clock Phase = 1)
        2. 6.9.4.2 SPI Slave Mode Electrical Data/Timing
          1. Table 6-37 SPI Slave Mode External Timing (Clock Phase = 0)
          2. Table 6-38 SPI Slave Mode External Timing (Clock Phase = 1)
      5. 6.9.5  Serial Communications Interface (SCI) Module
      6. 6.9.6  Multichannel Buffered Serial Port (McBSP) Module
        1. 6.9.6.1 McBSP Electrical Data/Timing
          1. 6.9.6.1.1 McBSP Transmit and Receive Timing
            1. Table 6-42 McBSP Timing Requirements
            2. Table 6-43 McBSP Switching Characteristics
          2. 6.9.6.1.2 McBSP as SPI Master or Slave Timing
            1. Table 6-44 McBSP as SPI Master or Slave Timing Requirements (CLKSTP = 10b, CLKXP = 0)
            2. Table 6-45 McBSP as SPI Master or Slave Switching Characteristics (CLKSTP = 10b, CLKXP = 0)
            3. Table 6-46 McBSP as SPI Master or Slave Timing Requirements (CLKSTP = 11b, CLKXP = 0)
            4. Table 6-47 McBSP as SPI Master or Slave Switching Characteristics (CLKSTP = 11b, CLKXP = 0)
            5. Table 6-48 McBSP as SPI Master or Slave Timing Requirements (CLKSTP = 10b, CLKXP = 1)
            6. Table 6-49 McBSP as SPI Master or Slave Switching Characteristics (CLKSTP = 10b, CLKXP = 1)
            7. Table 6-50 McBSP as SPI Master or Slave Timing Requirements (CLKSTP = 11b, CLKXP = 1)
            8. Table 6-51 McBSP as SPI Master or Slave Switching Characteristics (CLKSTP = 11b, CLKXP = 1)
      7. 6.9.7  Enhanced Controller Area Network (eCAN) Module
      8. 6.9.8  Inter-Integrated Circuit (I2C)
        1. 6.9.8.1 I2C Electrical Data/Timing
          1. Table 6-55 I2C Timing Requirements
          2. Table 6-56 I2C Switching Characteristics
      9. 6.9.9  Enhanced Pulse Width Modulator (ePWM) Modules (ePWM1 to ePWM8)
        1. 6.9.9.1 ePWM Electrical Data/Timing
          1. Table 6-59 ePWM Timing Requirements
          2. Table 6-60 ePWM Switching Characteristics
        2. 6.9.9.2 Trip-Zone Input Timing
          1. Table 6-61 Trip-Zone Input Timing Requirements
      10. 6.9.10 High-Resolution PWM (HRPWM)
        1. 6.9.10.1 HRPWM Electrical Data/Timing
          1. Table 6-62 High-Resolution PWM Characteristics
      11. 6.9.11 Enhanced Capture Module (eCAP1)
        1. 6.9.11.1 eCAP Electrical Data/Timing
          1. Table 6-64 Enhanced Capture (eCAP) Timing Requirement
          2. Table 6-65 eCAP Switching Characteristics
      12. 6.9.12 High-Resolution Capture Modules (HRCAP1 to HRCAP4)
        1. 6.9.12.1 HRCAP Electrical Data/Timing
          1. Table 6-67 High-Resolution Capture (HRCAP) Timing Requirements
      13. 6.9.13 Enhanced Quadrature Encoder Modules (eQEP1, eQEP2)
        1. 6.9.13.1 eQEP Electrical Data/Timing
          1. Table 6-69 Enhanced Quadrature Encoder Pulse (eQEP) Timing Requirements
          2. Table 6-70 eQEP Switching Characteristics
      14. 6.9.14 JTAG Port
      15. 6.9.15 General-Purpose Input/Output (GPIO) MUX
        1. 6.9.15.1 GPIO Electrical Data/Timing
          1. 6.9.15.1.1 GPIO Output Timing
            1. Table 6-76 General-Purpose Output Switching Characteristics
          2. 6.9.15.1.2 GPIO Input Timing
            1. Table 6-77 General-Purpose Input Timing Requirements
          3. 6.9.15.1.3 Sampling Window Width for Input Signals
          4. 6.9.15.1.4 Low-Power Mode Wakeup Timing
            1. Table 6-78 IDLE Mode Timing Requirements
            2. Table 6-79 IDLE Mode Switching Characteristics
            3. Table 6-80 STANDBY Mode Timing Requirements
            4. Table 6-81 STANDBY Mode Switching Characteristics
            5. Table 6-82 HALT Mode Timing Requirements
            6. Table 6-83 HALT Mode Switching Characteristics
      16. 6.9.16 Universal Serial Bus (USB)
        1. 6.9.16.1 USB Electrical Data/Timing
          1. Table 6-84 USB Input Ports DP and DM Timing Requirements
          2. Table 6-85 USB Output Ports DP and DM Switching Characteristics
  7. 7Applications, Implementation, and Layout
    1. 7.1 TI Design or Reference Design
  8. 8Device and Documentation Support
    1. 8.1 Getting Started
    2. 8.2 Device and Development Support Tool Nomenclature
    3. 8.3 Tools and Software
    4. 8.4 Documentation Support
    5. 8.5 Related Links
    6. 8.6 Community Resources
    7. 8.7 Trademarks
    8. 8.8 Electrostatic Discharge Caution
    9. 8.9 Glossary
  9. 9Mechanical, Packaging, and Orderable Information
    1. 9.1 Packaging Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Features

The core of the ADC contains a single 12-bit converter fed by two sample-and-hold circuits. The sample-and-hold circuits can be sampled simultaneously or sequentially. These, in turn, are fed by a total of up to 16 analog input channels. The converter can be configured to run with an internal band-gap reference to create true-voltage based conversions or with a pair of external voltage references (VREFHI/VREFLO) to create ratiometric-based conversions.

Contrary to previous ADC types, this ADC is not sequencer-based. The user can easily create a series of conversions from a single trigger. However, the basic principle of operation is centered around the configurations of individual conversions, called SOCs, or Start-Of-Conversions.

Functions of the ADC module include:

  • 12-bit ADC core with built-in dual sample-and-hold (S/H)
  • Simultaneous sampling or sequential sampling modes
  • Full range analog input: 0 V to 3.3 V fixed, or VREFHI/VREFLO ratiometric. The digital value of the input analog voltage is derived by:
    • Internal Reference (VREFLO = VSSA. VREFHI must not exceed VDDA when using either internal or external reference modes.)
    • TMS320F28069 TMS320F28068 TMS320F28067 TMS320F28066 TMS320F28065 TMS320F28064 TMS320F28063 TMS320F28062 q_adcint_prs698.gif
    • External Reference (VREFHI/VREFLO connected to external references. VREFHI must not exceed VDDA when using either internal or external reference modes.)
    • TMS320F28069 TMS320F28068 TMS320F28067 TMS320F28066 TMS320F28065 TMS320F28064 TMS320F28063 TMS320F28062 q_adcext_prs698.gif
  • Up to 16-channel, multiplexed inputs
  • 16 SOCs, configurable for trigger, sample window, and channel
  • 16 result registers (individually addressable) to store conversion values
  • Multiple trigger sources
    • S/W – software immediate start
    • ePWM 1–8
    • GPIO XINT2
    • CPU Timer 0, CPU Timer 1, CPU Timer 2
    • ADCINT1, ADCINT2
  • 9 flexible PIE interrupts, can configure interrupt request after any conversion

Table 6-24 ADC Configuration and Control Registers

REGISTER NAME ADDRESS SIZE
(×16)
EALLOW
PROTECTED
DESCRIPTION
ADCCTL1 0x7100 1 Yes Control 1 Register
ADCCTL2 0x7101 1 Yes Control 2 Register
ADCINTFLG 0x7104 1 No Interrupt Flag Register
ADCINTFLGCLR 0x7105 1 No Interrupt Flag Clear Register
ADCINTOVF 0x7106 1 No Interrupt Overflow Register
ADCINTOVFCLR 0x7107 1 No Interrupt Overflow Clear Register
INTSEL1N2 0x7108 1 Yes Interrupt 1 and 2 Selection Register
INTSEL3N4 0x7109 1 Yes Interrupt 3 and 4 Selection Register
INTSEL5N6 0x710A 1 Yes Interrupt 5 and 6 Selection Register
INTSEL7N8 0x710B 1 Yes Interrupt 7 and 8 Selection Register
INTSEL9N10 0x710C 1 Yes Interrupt 9 Selection Register (reserved Interrupt 10 Selection)
SOCPRICTL 0x7110 1 Yes SOC Priority Control Register
ADCSAMPLEMODE 0x7112 1 Yes Sampling Mode Register
ADCINTSOCSEL1 0x7114 1 Yes Interrupt SOC Selection 1 Register (for 8 channels)
ADCINTSOCSEL2 0x7115 1 Yes Interrupt SOC Selection 2 Register (for 8 channels)
ADCSOCFLG1 0x7118 1 No SOC Flag 1 Register (for 16 channels)
ADCSOCFRC1 0x711A 1 No SOC Force 1 Register (for 16 channels)
ADCSOCOVF1 0x711C 1 No SOC Overflow 1 Register (for 16 channels)
ADCSOCOVFCLR1 0x711E 1 No SOC Overflow Clear 1 Register (for 16 channels)
ADCSOC0CTL to ADCSOC15CTL 0x7120 – 0x712F 1 Yes SOC0 Control Register to SOC15 Control Register
ADCREFTRIM 0x7140 1 Yes Reference Trim Register
ADCOFFTRIM 0x7141 1 Yes Offset Trim Register
COMPHYSTCTL 0x714C 1 Yes Comparator Hysteresis Control Register
ADCREV 0x714F 1 No Revision Register

Table 6-25 ADC Result Registers (Mapped to PF0)

REGISTER NAME ADDRESS SIZE
(×16)
EALLOW
PROTECTED
DESCRIPTION
ADCRESULT0 to ADCRESULT15 0xB00 to 0xB0F 1 No ADC Result 0 Register to ADC Result 15 Register
TMS320F28069 TMS320F28068 TMS320F28067 TMS320F28066 TMS320F28065 TMS320F28064 TMS320F28063 TMS320F28062 adc_conn_prs698.gifFigure 6-21 ADC Connections

ADC Connections if the ADC is Not Used

TI recommends keeping the connections for the analog power pins, even if the ADC is not used. Following is a summary of how the ADC pins should be connected, if the ADC is not used in an application:

  • VDDA – Connect to VDDIO
  • VSSA – Connect to VSS
  • VREFLO – Connect to VSS
  • ADCINAn, ADCINBn, VREFHI – Connect to VSSA

When the ADC module is used in an application, unused ADC input pins should be connected to analog ground (VSSA).

NOTE

TI recommends that unused ADCIN pins which are multiplexed with AIO function be grounded through a 1-kΩ resistor. This recommendation is intended to prevent any inadvertent software activation of the AIO output logic-high driving directly to ground; this condition can cause permanent device damage by exceeding IOH Absolute Maximum.

When the ADC is not used, be sure that the clock to the ADC module is not turned on to realize power savings.