SPRS439O June   2007  – April 2019 TMS320F28232 , TMS320F28234 , TMS320F28235 , TMS320F28332 , TMS320F28333 , TMS320F28334 , TMS320F28335

PRODUCTION DATA.  

  1. 1Device Overview
    1. 1.1 Features
    2. 1.2 Applications
    3. 1.3 Description
    4. 1.4 Functional Block Diagram
  2. 2Revision History
  3. 3Device Comparison
    1. 3.1 Related Products
  4. 4Terminal Configuration and Functions
    1. 4.1 Pin Diagrams
    2. 4.2 Signal Descriptions
  5. 5Specifications
    1. 5.1  Absolute Maximum Ratings
    2. 5.2  ESD Ratings – Automotive
    3. 5.3  ESD Ratings – Commercial
    4. 5.4  Recommended Operating Conditions
    5. 5.5  Power Consumption Summary
      1. Table 5-1 TMS320F28335/F28235 Current Consumption by Power-Supply Pins at 150-MHz SYSCLKOUT
      2. Table 5-2 TMS320F28334/F28234 Current Consumption by Power-Supply Pins at 150-MHz SYSCLKOUT
      3. 5.5.1     Reducing Current Consumption
      4. 5.5.2     Current Consumption Graphs
    6. 5.6  Electrical Characteristics
    7. 5.7  Thermal Resistance Characteristics
      1. 5.7.1 PGF Package
      2. 5.7.2 PTP Package
      3. 5.7.3 ZHH Package
      4. 5.7.4 ZJZ Package
    8. 5.8  Thermal Design Considerations
    9. 5.9  Timing and Switching Characteristics
      1. 5.9.1 Timing Parameter Symbology
        1. 5.9.1.1 General Notes on Timing Parameters
        2. 5.9.1.2 Test Load Circuit
        3. 5.9.1.3 Device Clock Table
          1. Table 5-4 Clocking and Nomenclature (150-MHz Devices)
          2. Table 5-5 Clocking and Nomenclature (100-MHz Devices)
      2. 5.9.2 Power Sequencing
        1. 5.9.2.1   Power Management and Supervisory Circuit Solutions
        2. Table 5-6 Reset (XRS) Timing Requirements
      3. 5.9.3 Clock Requirements and Characteristics
        1. Table 5-7  Input Clock Frequency
        2. Table 5-8  XCLKIN Timing Requirements – PLL Enabled
        3. Table 5-9  XCLKIN Timing Requirements – PLL Disabled
        4. Table 5-10 XCLKOUT Switching Characteristics (PLL Bypassed or Enabled)
      4. 5.9.4 Peripherals
        1. 5.9.4.1 General-Purpose Input/Output (GPIO)
          1. 5.9.4.1.1 GPIO - Output Timing
            1. Table 5-11 General-Purpose Output Switching Characteristics
          2. 5.9.4.1.2 GPIO - Input Timing
            1. Table 5-12 General-Purpose Input Timing Requirements
          3. 5.9.4.1.3 Sampling Window Width for Input Signals
          4. 5.9.4.1.4 Low-Power Mode Wakeup Timing
            1. Table 5-13 IDLE Mode Timing Requirements
            2. Table 5-14 IDLE Mode Switching Characteristics
            3. Table 5-15 STANDBY Mode Timing Requirements
            4. Table 5-16 STANDBY Mode Switching Characteristics
            5. Table 5-17 HALT Mode Timing Requirements
            6. Table 5-18 HALT Mode Switching Characteristics
        2. 5.9.4.2 Enhanced Control Peripherals
          1. 5.9.4.2.1 Enhanced Pulse Width Modulator (ePWM) Timing
            1. Table 5-19 ePWM Timing Requirements
            2. Table 5-20 ePWM Switching Characteristics
          2. 5.9.4.2.2 Trip-Zone Input Timing
            1. Table 5-21 Trip-Zone Input Timing Requirements
          3. 5.9.4.2.3 High-Resolution PWM Timing
            1. Table 5-22 High-Resolution PWM Characteristics at SYSCLKOUT = (60–150 MHz)
          4. 5.9.4.2.4 Enhanced Capture (eCAP) Timing
            1. Table 5-23 Enhanced Capture (eCAP) Timing Requirements
            2. Table 5-24 eCAP Switching Characteristics
          5. 5.9.4.2.5 Enhanced Quadrature Encoder Pulse (eQEP) Timing
            1. Table 5-25 Enhanced Quadrature Encoder Pulse (eQEP) Timing Requirements
            2. Table 5-26 eQEP Switching Characteristics
          6. 5.9.4.2.6 ADC Start-of-Conversion Timing
            1. Table 5-27 External ADC Start-of-Conversion Switching Characteristics
        3. 5.9.4.3 External Interrupt Timing
          1. Table 5-28 External Interrupt Timing Requirements
          2. Table 5-29 External Interrupt Switching Characteristics
        4. 5.9.4.4 I2C Electrical Specification and Timing
          1. Table 5-30 I2C Timing
        5. 5.9.4.5 Serial Peripheral Interface (SPI) Timing
          1. 5.9.4.5.1 Master Mode Timing
            1. Table 5-31 SPI Master Mode External Timing (Clock Phase = 0)
            2. Table 5-32 SPI Master Mode External Timing (Clock Phase = 1)
          2. 5.9.4.5.2 Slave Mode Timing
            1. Table 5-33 SPI Slave Mode External Timing (Clock Phase = 0)
            2. Table 5-34 SPI Slave Mode External Timing (Clock Phase = 1)
        6. 5.9.4.6 Multichannel Buffered Serial Port (McBSP) Timing
          1. 5.9.4.6.1 McBSP Transmit and Receive Timing
            1. Table 5-35 McBSP Timing Requirements
            2. Table 5-36 McBSP Switching Characteristics
          2. 5.9.4.6.2 McBSP as SPI Master or Slave Timing
            1. Table 5-37 McBSP as SPI Master or Slave Timing Requirements (CLKSTP = 10b, CLKXP = 0)
            2. Table 5-38 McBSP as SPI Master or Slave Switching Characteristics (CLKSTP = 10b, CLKXP = 0)
            3. Table 5-39 McBSP as SPI Master or Slave Timing Requirements (CLKSTP = 11b, CLKXP = 0)
            4. Table 5-40 McBSP as SPI Master or Slave Switching Characteristics (CLKSTP = 11b, CLKXP = 0)
            5. Table 5-41 McBSP as SPI Master or Slave Timing Requirements (CLKSTP = 10b, CLKXP = 1)
            6. Table 5-42 McBSP as SPI Master or Slave Switching Characteristics (CLKSTP = 10b, CLKXP = 1)
            7. Table 5-43 McBSP as SPI Master or Slave Timing Requirements (CLKSTP = 11b, CLKXP = 1)
            8. Table 5-44 McBSP as SPI Master or Slave Switching Characteristics (CLKSTP = 11b, CLKXP = 1)
      5. 5.9.5 Emulator Connection Without Signal Buffering for the DSP
      6. 5.9.6 External Interface (XINTF) Timing
        1. 5.9.6.1 USEREADY = 0
        2. 5.9.6.2 Synchronous Mode (USEREADY = 1, READYMODE = 0)
        3. 5.9.6.3 Asynchronous Mode (USEREADY = 1, READYMODE = 1)
        4. 5.9.6.4 XINTF Signal Alignment to XCLKOUT
        5. 5.9.6.5 External Interface Read Timing
          1. Table 5-47 External Interface Read Timing Requirements
          2. Table 5-48 External Interface Read Switching Characteristics
        6. 5.9.6.6 External Interface Write Timing
          1. Table 5-49 External Interface Write Switching Characteristics
        7. 5.9.6.7 External Interface Ready-on-Read Timing With One External Wait State
          1. Table 5-50 External Interface Read Switching Characteristics (Ready-on-Read, One Wait State)
          2. Table 5-51 External Interface Read Timing Requirements (Ready-on-Read, One Wait State)
          3. Table 5-52 Synchronous XREADY Timing Requirements (Ready-on-Read, One Wait State)
          4. Table 5-53 Asynchronous XREADY Timing Requirements (Ready-on-Read, One Wait State)
        8. 5.9.6.8 External Interface Ready-on-Write Timing With One External Wait State
          1. Table 5-54 External Interface Write Switching Characteristics (Ready-on-Write, One Wait State)
          2. Table 5-55 Synchronous XREADY Timing Requirements (Ready-on-Write, One Wait State)
          3. Table 5-56 Asynchronous XREADY Timing Requirements (Ready-on-Write, One Wait State)
        9. 5.9.6.9 XHOLD and XHOLDA Timing
          1. Table 5-57 XHOLD/XHOLDA Timing Requirements (XCLKOUT = XTIMCLK)
          2. Table 5-58 XHOLD/XHOLDA Timing Requirements (XCLKOUT = 1/2 XTIMCLK)
      7. 5.9.7 Flash Timing
        1. Table 5-59 Flash Endurance for A and S Temperature Material
        2. Table 5-60 Flash Endurance for Q Temperature Material
        3. Table 5-61 Flash Parameters at 150-MHz SYSCLKOUT
        4. Table 5-62 Flash/OTP Access Timing
        5. Table 5-63 Flash Data Retention Duration
    10. 5.10 On-Chip Analog-to-Digital Converter
      1. Table 5-65 ADC Electrical Characteristics (over recommended operating conditions)
      2. 5.10.1     ADC Power-Up Control Bit Timing
        1. Table 5-66 ADC Power-Up Delays
        2. Table 5-67 Typical Current Consumption for Different ADC Configurations (at 25-MHz ADCCLK)
      3. 5.10.2     Definitions
      4. 5.10.3     Sequential Sampling Mode (Single-Channel) (SMODE = 0)
        1. Table 5-68 Sequential Sampling Mode Timing
      5. 5.10.4     Simultaneous Sampling Mode (Dual-Channel) (SMODE = 1)
        1. Table 5-69 Simultaneous Sampling Mode Timing
      6. 5.10.5     Detailed Descriptions
    11. 5.11 Migrating Between F2833x Devices and F2823x Devices
  6. 6Detailed Description
    1. 6.1 Brief Descriptions
      1. 6.1.1  C28x CPU
      2. 6.1.2  Memory Bus (Harvard Bus Architecture)
      3. 6.1.3  Peripheral Bus
      4. 6.1.4  Real-Time JTAG and Analysis
      5. 6.1.5  External Interface (XINTF)
      6. 6.1.6  Flash
      7. 6.1.7  M0, M1 SARAMs
      8. 6.1.8  L0, L1, L2, L3, L4, L5, L6, L7 SARAMs
      9. 6.1.9  Boot ROM
        1. 6.1.9.1 Peripheral Pins Used by the Bootloader
      10. 6.1.10 Security
      11. 6.1.11 Peripheral Interrupt Expansion (PIE) Block
      12. 6.1.12 External Interrupts (XINT1–XINT7, XNMI)
      13. 6.1.13 Oscillator and PLL
      14. 6.1.14 Watchdog
      15. 6.1.15 Peripheral Clocking
      16. 6.1.16 Low-Power Modes
      17. 6.1.17 Peripheral Frames 0, 1, 2, 3 (PFn)
      18. 6.1.18 General-Purpose Input/Output (GPIO) Multiplexer
      19. 6.1.19 32-Bit CPU-Timers (0, 1, 2)
      20. 6.1.20 Control Peripherals
      21. 6.1.21 Serial Port Peripherals
    2. 6.2 Peripherals
      1. 6.2.1  DMA Overview
      2. 6.2.2  32-Bit CPU-Timer 0, CPU-Timer 1, CPU-Timer 2
      3. 6.2.3  Enhanced PWM Modules
      4. 6.2.4  High-Resolution PWM (HRPWM)
      5. 6.2.5  Enhanced CAP Modules
      6. 6.2.6  Enhanced QEP Modules
      7. 6.2.7  Analog-to-Digital Converter (ADC) Module
        1. 6.2.7.1 ADC Connections if the ADC Is Not Used
        2. 6.2.7.2 ADC Registers
        3. 6.2.7.3 ADC Calibration
      8. 6.2.8  Multichannel Buffered Serial Port (McBSP) Module
      9. 6.2.9  Enhanced Controller Area Network (eCAN) Modules (eCAN-A and eCAN-B)
      10. 6.2.10 Serial Communications Interface (SCI) Modules (SCI-A, SCI-B, SCI-C)
      11. 6.2.11 Serial Peripheral Interface (SPI) Module (SPI-A)
      12. 6.2.12 Inter-Integrated Circuit (I2C)
      13. 6.2.13 GPIO MUX
      14. 6.2.14 External Interface (XINTF)
    3. 6.3 Memory Maps
    4. 6.4 Register Map
      1. 6.4.1 Device Emulation Registers
    5. 6.5 Interrupts
      1. 6.5.1 External Interrupts
    6. 6.6 System Control
      1. 6.6.1 OSC and PLL Block
        1. 6.6.1.1 External Reference Oscillator Clock Option
        2. 6.6.1.2 PLL-Based Clock Module
        3. 6.6.1.3 Loss of Input Clock
      2. 6.6.2 Watchdog Block
    7. 6.7 Low-Power Modes Block
  7. 7Applications, Implementation, and Layout
    1. 7.1 TI Design or Reference Design
  8. 8Device and Documentation Support
    1. 8.1 Getting Started
    2. 8.2 Device and Development Support Tool Nomenclature
    3. 8.3 Tools and Software
    4. 8.4 Documentation Support
    5. 8.5 Related Links
    6. 8.6 Community Resources
    7. 8.7 Trademarks
    8. 8.8 Electrostatic Discharge Caution
    9. 8.9 Glossary
  9. 9Mechanical, Packaging, and Orderable Information
    1. 9.1 Packaging Information

Package Options

Refer to the PDF data sheet for device specific package drawings

Mechanical Data (Package|Pins)
  • ZHH|179
  • ZJZ|176
  • ZAY|179
  • PGF|176
  • PTP|176
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Documentation Support

To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper right corner, click on Alert me to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document.

The current documentation that describes the processor, related peripherals, and other technical collateral is listed below.

Errata

TMS320F2833x, TMS320F2823x DSC silicon errata describes the advisories and usage notes for different versions of silicon.

CPU User's Guides

TMS320C28x CPU and instruction set reference guide describes the central processing unit (CPU) and the assembly language instructions of the TMS320C28x fixed-point digital signal processors (DSPs). It also describes emulation features available on these DSPs.

TMS320C28x extended instruction sets technical reference manual describes the architecture, pipeline, and instruction set of the TMU, VCU-II, and FPU accelerators.

Peripheral Guides

C2000 real-time control peripherals reference guide describes the peripheral reference guides of the 28x digital signal processors (DSPs).

TMS320x2833x, 2823x system control and interrupts reference guide describes the various interrupts and system control features of the 2833x and 2823x digital signal controllers (DSCs).

TMS320x2833x Analog-to-Digital Converter (ADC) module reference guide describes how to configure and use the on-chip ADC module, which is a 12-bit pipelined ADC.

TMS320x2833x, 2823x DSC External Interface (XINTF) reference guide describes the XINTF, which is a nonmultiplexed asynchronous bus, as it is used on the 2833x and 2823x devices.

TMS320x2833x, 2823x Boot ROM reference guide describes the purpose and features of the bootloader (factory-programmed boot-loading software) and provides examples of code. It also describes other contents of the device on-chip boot ROM and identifies where all of the information is located within that memory.

TMS320F2833x/2823x Multichannel Buffered Serial Port (McBSP) reference guide describes the McBSP available on the 2833x and 2823x devices. The McBSPs allow direct interface between a DSP and other devices in a system.

TMS320x2833x, 2823x Direct Memory Access (DMA) module reference guide describes the DMA on the 2833x and 2823x devices.

TMS320x2833x, 2823x Enhanced Pulse Width Modulator (ePWM) module reference guide describes the main areas of the enhanced pulse width modulator that include digital motor control, switch mode power supply control, UPS (uninterruptible power supplies), and other forms of power conversion.

TMS320x2833x, 2823x High Resolution Pulse Width Modulator (HRPWM) reference guide describes the operation of the high-resolution extension to the pulse width modulator (HRPWM).

TMS320x2833x, 2823x Enhanced Capture (eCAP) module reference guide describes the enhanced capture module. It includes the module description and registers.

TMS320x2833x, 2823x Enhanced Quadrature Encoder Pulse (eQEP) module reference guide describes the eQEP module, which is used for interfacing with a linear or rotary incremental encoder to get position, direction, and speed information from a rotating machine in high-performance motion and position control systems. It includes the module description and registers.

TMS320F2833x, 2823x Enhanced Controller Area Network (eCAN) reference guide describes the eCAN that uses established protocol to communicate serially with other controllers in electrically noisy environments.

TMS320x2833x, 2823x Serial Communications Interface (SCI) reference guide describes the SCI, which is a two-wire asynchronous serial port, commonly known as a UART. The SCI modules support digital communications between the CPU and other asynchronous peripherals that use the standard nonreturn-to-zero (NRZ) format.

TMS320x2833x, 2823x Serial Peripheral Interface (SPI) reference guide describes the SPI - a high-speed synchronous serial input/output (I/O) port - that allows a serial bit stream of programmed length (one to sixteen bits) to be shifted into and out of the device at a programmed bit-transfer rate.

TMS320x2833x, 2823x Inter-Integrated Circuit (I2C) module reference guide describes the features and operation of the inter-integrated circuit (I2C) module.

Tools Guides

TMS320C28x Assembly language tools v18.12.0.LTS user's guide describes the assembly language tools (assembler and other tools used to develop assembly language code), assembler directives, macros, common object file format, and symbolic debugging directives for the TMS320C28x device.

TMS320C28x optimizing C/C++ compiler v18.12.0.LTS user's guide describes the TMS320C28x C/C++ compiler. This compiler accepts ANSI standard C/C++ source code and produces TMS320 DSP assembly language source code for the TMS320C28x device.

TMS320C28x DSP/BIOS 5.x Application Programming Interface (API) reference guide describes development using DSP/BIOS.

Application Reports

The SMT & packaging application notes website lists documentation on TI’s surface mount technology (SMT) and application notes on a variety of packaging-related topics.

TMS320x281x to TMS320x2833x or 2823x migration overview describes how to migrate from the 281x device design to 2833x or 2823x designs.

TMS320x280x to TMS320x2833x or 2823x migration overview describes how to migrate from a 280x device design to 2833x or 2823x designs.

TMS320C28x FPU primer provides an overview of the floating-point unit (FPU) in the C2000™ Delfino microcontroller devices.

Running an application from internal flash memory on the TMS320F28xxx DSP covers the requirements needed to properly configure application software for execution from on-chip flash memory. Requirements for both DSP/BIOS and non-DSP/BIOS projects are presented. Example code projects are included.

Programming TMS320x28xx and 28xxx peripherals in C/C++ explores a hardware abstraction layer implementation to make C/C++ coding easier on 28x DSPs. This method is compared to traditional #define macros and topics of code efficiency and special case registers are also addressed.

Using PWM output as a Digital-to-Analog Converter on a TMS320F280x Digital Signal Controller presents a method for using the on-chip pulse width modulated (PWM) signal generators on the TMS320F280x family of digital signal controllers as a digital-to-analog converter (DAC).

TMS320F280x digital signal controller USB connectivity using the TUSB3410 USB-to-UART bridge chip presents hardware connections as well as software preparation and operation of the development system using a simple communication echo program.

Using the Enhanced Quadrature Encoder Pulse (eQEP) module in TMS320x280x, 28xxx as a dedicated capture provides a guide for the use of the eQEP module as a dedicated capture unit and is applicable to the TMS320x280x, 28xxx family of processors.

Using the ePWM module for 0% - 100% duty cycle control provides a guide for the use of the ePWM module to provide 0% to 100% duty cycle control and is applicable to the TMS320x280x family of processors.

TMS320x280x and TMS320F2801x ADC calibration describes a method for improving the absolute accuracy of the 12-bit ADC found on the TMS320x280x and TMS320F2801x devices. Inherent gain and offset errors affect the absolute accuracy of the ADC. The methods described in this report can improve the absolute accuracy of the ADC to levels better than 0.5%. This application report has an option to download an example program that executes from RAM on the F2808 EzDSP.

Online stack overflow detection on the TMS320C28x DSP presents the methodology for online stack overflow detection on the TMS320C28x DSP. C-source code is provided that contains functions for implementing the overflow detection on both DSP/BIOS and non-DSP/BIOS applications.

PowerPAD™ thermally enhanced package focuses on the specifics of integrating a PowerPAD™ package into the PCB design.

Semiconductor packing methodology describes the packing methodologies employed to prepare semiconductor devices for shipment to end users.

Calculating useful lifetimes of embedded processors provides a methodology for calculating the useful lifetime of TI embedded processors (EPs) under power when used in electronic systems. It is aimed at general engineers who wish to determine if the reliability of the TI EP meets the end system reliability requirement.

Semiconductor and IC package thermal metrics describes traditional and new thermal metrics and puts their application in perspective with respect to system-level junction temperature estimation.

An introduction to IBIS (I/O Buffer Information Specification) modeling discusses various aspects of IBIS including its history, advantages, compatibility, model generation flow, data requirements in modeling the input/output structures and future trends.

Serial flash programming of C2000™ microcontrollers discusses using a flash kernel and ROM loaders for serial programming a device.