SPNS253A May   2018  – September 2019 TMS570LC4357-EP

PRODUCTION DATA.  

  1. Device Overview
    1. 1.1 Features
    2. 1.2 Applications
    3. 1.3 Description
    4. 1.4 Functional Block Diagram
  2. Revision History
  3. Terminal Configuration and Functions
    1. 3.1 GWT BGA Package Ball-Map (337 Terminal Grid Array)
    2. 3.2 Terminal Functions
      1. 3.2.1 GWT Package
        1. 3.2.1.1  Multibuffered Analog-to-Digital Converters (MibADC)
        2. 3.2.1.2  Enhanced High-End Timer Modules (N2HET)
        3. 3.2.1.3  RAM Trace Port (RTP)
        4. 3.2.1.4  Enhanced Capture Modules (eCAP)
        5. 3.2.1.5  Enhanced Quadrature Encoder Pulse Modules (eQEP)
        6. 3.2.1.6  Enhanced Pulse-Width Modulator Modules (ePWM)
        7. 3.2.1.7  Data Modification Module (DMM)
        8. 3.2.1.8  General-Purpose Input / Output (GIO)
        9. 3.2.1.9  FlexRay Interface Controller (FlexRay)
        10. 3.2.1.10 Controller Area Network Controllers (DCAN)
        11. 3.2.1.11 Local Interconnect Network Interface Module (LIN)
        12. 3.2.1.12 Standard Serial Communication Interface (SCI)
        13. 3.2.1.13 Inter-Integrated Circuit Interface Module (I2C)
        14. 3.2.1.14 Multibuffered Serial Peripheral Interface Modules (MibSPI)
        15. 3.2.1.15 Ethernet Controller
        16. 3.2.1.16 External Memory Interface (EMIF)
        17. 3.2.1.17 Embedded Trace Macrocell Interface for Cortex-R5F (ETM-R5)
        18. 3.2.1.18 System Module Interface
        19. 3.2.1.19 Clock Inputs and Outputs
        20. 3.2.1.20 Test and Debug Modules Interface
        21. 3.2.1.21 Flash Supply and Test Pads
        22. 3.2.1.22 Supply for Core Logic: 1.2-V Nominal
        23. 3.2.1.23 Supply for I/O Cells: 3.3-V Nominal
        24. 3.2.1.24 Ground Reference for All Supplies Except VCCAD
        25. 3.2.1.25 Other Supplies
      2. 3.2.2 Multiplexing
        1. 3.2.2.1 Output Multiplexing
          1. 3.2.2.1.1 Notes on Output Multiplexing
        2. 3.2.2.2 Input Multiplexing
          1. 3.2.2.2.1 Notes on Input Multiplexing
          2. 3.2.2.2.2 General Rules for Multiplexing Control Registers
  4. Specifications
    1. 4.1  Absolute Maximum Ratings
    2. 4.2  ESD Ratings
    3. 4.3  Power-On Hours (POH)
    4. 4.4  Recommended Operating Conditions
    5. 4.5  Switching Characteristics Over Recommended Operating Conditions for Clock Domains
    6. 4.6  Wait States Required - L2 Memories
    7. 4.7  Power Consumption Summary
    8. 4.8  Input/Output Electrical Characteristics Over Recommended Operating Conditions
    9. 4.9  Thermal Resistance Characteristics for the BGA Package (GWT)
    10. 4.10 Timing and Switching Characteristics
      1. 4.10.1 Input Timings
      2. 4.10.2 Output Timings
  5. System Information and Electrical Specifications
    1. 5.1  Device Power Domains
    2. 5.2  Voltage Monitor Characteristics
      1. 5.2.1 Important Considerations
      2. 5.2.2 Voltage Monitor Operation
      3. 5.2.3 Supply Filtering
    3. 5.3  Power Sequencing and Power-On Reset
      1. 5.3.1 Power-Up Sequence
      2. 5.3.2 Power-Down Sequence
      3. 5.3.3 Power-On Reset: nPORRST
        1. 5.3.3.1 nPORRST Electrical and Timing Requirements
    4. 5.4  Warm Reset (nRST)
      1. 5.4.1 Causes of Warm Reset
      2. 5.4.2 nRST Timing Requirements
    5. 5.5  ARM Cortex-R5F CPU Information
      1. 5.5.1 Summary of ARM Cortex-R5F CPU Features
      2. 5.5.2 Dual Core Implementation
      3. 5.5.3 Duplicate Clock Tree After GCLK
      4. 5.5.4 ARM Cortex-R5F CPU Compare Module (CCM) for Safety
        1. 5.5.4.1 Signal Compare Operating Modes
          1. 5.5.4.1.1 Active Compare Lockstep Mode
          2. 5.5.4.1.2 Self-Test Mode
          3. 5.5.4.1.3 Error Forcing Mode
          4. 5.5.4.1.4 Self-Test Error Forcing Mode
        2. 5.5.4.2 Bus Inactivity Monitor
        3. 5.5.4.3 CPU Registers Initialization
      5. 5.5.5 CPU Self-Test
        1. 5.5.5.1 Application Sequence for CPU Self-Test
        2. 5.5.5.2 CPU Self-Test Clock Configuration
        3. 5.5.5.3 CPU Self-Test Coverage
      6. 5.5.6 N2HET STC / LBIST Self-Test Coverage
    6. 5.6  Clocks
      1. 5.6.1 Clock Sources
        1. 5.6.1.1 Main Oscillator
          1. 5.6.1.1.1 Timing Requirements for Main Oscillator
        2. 5.6.1.2 Low-Power Oscillator
          1. 5.6.1.2.1 Features
          2. 5.6.1.2.2 LPO Electrical and Timing Specifications
        3. 5.6.1.3 Phase-Locked Loop (PLL) Clock Modules
          1. 5.6.1.3.1 Block Diagram
          2. 5.6.1.3.2 PLL Timing Specifications
        4. 5.6.1.4 External Clock Inputs
      2. 5.6.2 Clock Domains
        1. 5.6.2.1 Clock Domain Descriptions
        2. 5.6.2.2 Mapping of Clock Domains to Device Modules
      3. 5.6.3 Special Clock Source Selection Scheme for VCLKA4_DIVR_EMAC
      4. 5.6.4 Clock Test Mode
    7. 5.7  Clock Monitoring
      1. 5.7.1 Clock Monitor Timings
      2. 5.7.2 External Clock (ECLK) Output Functionality
      3. 5.7.3 Dual Clock Comparators
        1. 5.7.3.1 Features
        2. 5.7.3.2 Mapping of DCC Clock Source Inputs
    8. 5.8  Glitch Filters
    9. 5.9  Device Memory Map
      1. 5.9.1 Memory Map Diagram
      2. 5.9.2 Memory Map Table
      3. 5.9.3 Special Consideration for CPU Access Errors Resulting in Imprecise Aborts
      4. 5.9.4 Master/Slave Access Privileges
        1. 5.9.4.1 Special Notes on Accesses to Certain Slaves
      5. 5.9.5 MasterID to PCRx
      6. 5.9.6 CPU Interconnect Subsystem SDC MMR Port
      7. 5.9.7 Parameter Overlay Module (POM) Considerations
    10. 5.10 Flash Memory
      1. 5.10.1 Flash Memory Configuration
      2. 5.10.2 Main Features of Flash Module
      3. 5.10.3 ECC Protection for Flash Accesses
      4. 5.10.4 Flash Access Speeds
      5. 5.10.5 Flash Program and Erase Timings
        1. 5.10.5.1 Flash Program and Erase Timings for Program Flash
        2. 5.10.5.2 Flash Program and Erase Timings for Data Flash
    11. 5.11 L2RAMW (Level 2 RAM Interface Module)
      1. 5.11.1 L2 SRAM Initialization
    12. 5.12 ECC / Parity Protection for Accesses to Peripheral RAMs
    13. 5.13 On-Chip SRAM Initialization and Testing
      1. 5.13.1 On-Chip SRAM Self-Test Using PBIST
        1. 5.13.1.1 Features
        2. 5.13.1.2 PBIST RAM Groups
      2. 5.13.2 On-Chip SRAM Auto Initialization
    14. 5.14 External Memory Interface (EMIF)
      1. 5.14.1 Features
      2. 5.14.2 Electrical and Timing Specifications
        1. 5.14.2.1 Read Timing (Asynchronous RAM)
        2. 5.14.2.2 Write Timing (Asynchronous RAM)
        3. 5.14.2.3 EMIF Asynchronous Memory Timing
        4. 5.14.2.4 Read Timing (Synchronous RAM)
        5. 5.14.2.5 Write Timing (Synchronous RAM)
        6. 5.14.2.6 EMIF Synchronous Memory Timing
    15. 5.15 Vectored Interrupt Manager
      1. 5.15.1 VIM Features
      2. 5.15.2 Interrupt Generation
      3. 5.15.3 Interrupt Request Assignments
    16. 5.16 ECC Error Event Monitoring and Profiling
      1. 5.16.1 EPC Module Operation
        1. 5.16.1.1 Correctable Error Handling
        2. 5.16.1.2 Uncorrectable Error Handling
    17. 5.17 DMA Controller
      1. 5.17.1 DMA Features
      2. 5.17.2 DMA Transfer Port Assignment
      3. 5.17.3 Default DMA Request Map
      4. 5.17.4 Using a GIO terminal as a DMA Request Input
    18. 5.18 Real-Time Interrupt Module
      1. 5.18.1 Features
      2. 5.18.2 Block Diagrams
      3. 5.18.3 Clock Source Options
      4. 5.18.4 Network Time Synchronization Inputs
    19. 5.19 Error Signaling Module
      1. 5.19.1 ESM Features
      2. 5.19.2 ESM Channel Assignments
    20. 5.20 Reset / Abort / Error Sources
    21. 5.21 Digital Windowed Watchdog
    22. 5.22 Debug Subsystem
      1. 5.22.1  Block Diagram
      2. 5.22.2  Debug Components Memory Map
      3. 5.22.3  Embedded Cross Trigger
      4. 5.22.4  JTAG Identification Code
      5. 5.22.5  Debug ROM
      6. 5.22.6  JTAG Scan Interface Timings
      7. 5.22.7  Advanced JTAG Security Module
      8. 5.22.8  Embedded Trace Macrocell (ETM-R5)
        1. 5.22.8.1 ETM TRACECLKIN Selection
        2. 5.22.8.2 Timing Specifications
      9. 5.22.9  RAM Trace Port (RTP)
        1. 5.22.9.1 RTP Features
        2. 5.22.9.2 Timing Specifications
      10. 5.22.10 Data Modification Module (DMM)
        1. 5.22.10.1 DMM Features
        2. 5.22.10.2 Timing Specifications
      11. 5.22.11 Boundary Scan Chain
  6. Peripheral Information and Electrical Specifications
    1. 6.1  Enhanced Translator PWM Modules (ePWM)
      1. 6.1.1 ePWM Clocking and Reset
      2. 6.1.2 Synchronization of ePWMx Time-Base Counters
      3. 6.1.3 Synchronizing all ePWM Modules to the N2HET1 Module Time Base
      4. 6.1.4 Phase-Locking the Time-Base Clocks of Multiple ePWM Modules
      5. 6.1.5 ePWM Synchronization with External Devices
      6. 6.1.6 ePWM Trip Zones
        1. 6.1.6.1 Trip Zones TZ1n, TZ2n, TZ3n
        2. 6.1.6.2 Trip Zone TZ4n
        3. 6.1.6.3 Trip Zone TZ5n
        4. 6.1.6.4 Trip Zone TZ6n
      7. 6.1.7 Triggering of ADC Start of Conversion Using ePWMx SOCA and SOCB Outputs
      8. 6.1.8 Enhanced Translator-Pulse Width Modulator (ePWMx) Electrical Data/Timing
    2. 6.2  Enhanced Capture Modules (eCAP)
      1. 6.2.1 Clock Enable Control for eCAPx Modules
      2. 6.2.2 PWM Output Capability of eCAPx
      3. 6.2.3 Input Connection to eCAPx Modules
      4. 6.2.4 Enhanced Capture Module (eCAP) Electrical Data/Timing
    3. 6.3  Enhanced Quadrature Encoder (eQEP)
      1. 6.3.1 Clock Enable Control for eQEPx Modules
      2. 6.3.2 Using eQEPx Phase Error to Trip ePWMx Outputs
      3. 6.3.3 Input Connection to eQEPx Modules
      4. 6.3.4 Enhanced Quadrature Encoder Pulse (eQEPx) Timing
    4. 6.4  12-bit Multibuffered Analog-to-Digital Converter (MibADC)
      1. 6.4.1 MibADC Features
      2. 6.4.2 Event Trigger Options
        1. 6.4.2.1 MibADC1 Event Trigger Hookup
        2. 6.4.2.2 MibADC2 Event Trigger Hookup
        3. 6.4.2.3 Controlling ADC1 and ADC2 Event Trigger Options Using SOC Output from ePWM Modules
      3. 6.4.3 ADC Electrical and Timing Specifications
      4. 6.4.4 Performance (Accuracy) Specifications
        1. 6.4.4.1 MibADC Nonlinearity Errors
        2. 6.4.4.2 MibADC Total Error
    5. 6.5  General-Purpose Input/Output
      1. 6.5.1 Features
    6. 6.6  Enhanced High-End Timer (N2HET)
      1. 6.6.1 Features
      2. 6.6.2 N2HET RAM Organization
      3. 6.6.3 Input Timing Specifications
      4. 6.6.4 N2HET1-N2HET2 Interconnections
      5. 6.6.5 N2HET Checking
        1. 6.6.5.1 Internal Monitoring
        2. 6.6.5.2 Output Monitoring using Dual Clock Comparator (DCC)
      6. 6.6.6 Disabling N2HET Outputs
      7. 6.6.7 High-End Timer Transfer Unit (HET-TU)
        1. 6.6.7.1 Features
        2. 6.6.7.2 Trigger Connections
    7. 6.7  FlexRay Interface
      1. 6.7.1 Features
      2. 6.7.2 Electrical and Timing Specifications
      3. 6.7.3 FlexRay Transfer Unit
    8. 6.8  Controller Area Network (DCAN)
      1. 6.8.1 Features
      2. 6.8.2 Electrical and Timing Specifications
    9. 6.9  Local Interconnect Network Interface (LIN)
      1. 6.9.1 LIN Features
    10. 6.10 Serial Communication Interface (SCI)
      1. 6.10.1 Features
    11. 6.11 Inter-Integrated Circuit (I2C)
      1. 6.11.1 Features
      2. 6.11.2 I2C I/O Timing Specifications
    12. 6.12 Multibuffered / Standard Serial Peripheral Interface
      1. 6.12.1 Features
      2. 6.12.2 MibSPI Transmit and Receive RAM Organization
      3. 6.12.3 MibSPI Transmit Trigger Events
        1. 6.12.3.1 MIBSPI1 Event Trigger Hookup
        2. 6.12.3.2 MIBSPI2 Event Trigger Hookup
        3. 6.12.3.3 MIBSPI3 Event Trigger Hookup
        4. 6.12.3.4 MIBSPI4 Event Trigger Hookup
        5. 6.12.3.5 MIBSPI5 Event Trigger Hookup
      4. 6.12.4 MibSPI/SPI Master Mode I/O Timing Specifications
      5. 6.12.5 SPI Slave Mode I/O Timings
    13. 6.13 Ethernet Media Access Controller
      1. 6.13.1 Ethernet MII Electrical and Timing Specifications
      2. 6.13.2 Ethernet RMII Electrical and Timing Specifications
      3. 6.13.3 Management Data Input/Output (MDIO)
  7. Applications, Implementation, and Layout
    1. 7.1 TI Design or Reference Design
  8. Device and Documentation Support
    1. 8.1 Device Support
      1. 8.1.1 Development Support
      2. 8.1.2 Device and Development-Support Tool Nomenclature
    2. 8.2 Documentation Support
      1. 8.2.1 Related Documentation from Texas Instruments
      2. 8.2.2 Receiving Notification of Documentation Updates
      3. 8.2.3 Support Resources
    3. 8.3 Trademarks
    4. 8.4 Electrostatic Discharge Caution
    5. 8.5 Glossary
    6. 8.6 Device Identification
      1. 8.6.1 Device Identification Code Register
        1. Table 8-1 Device ID Bit Allocation Register Field Descriptions
      2. 8.6.2 Die Identification Registers
    7. 8.7 Module Certifications
      1. 8.7.1 FlexRay Certifications
      2. 8.7.2 DCAN Certification
      3. 8.7.3 LIN Certification
        1. 8.7.3.1 LIN Master Mode
        2. 8.7.3.2 LIN Slave Mode - Fixed Baud Rate
        3. 8.7.3.3 LIN Slave Mode - Adaptive Baud Rate
  9. Mechanical Data
    1. 9.1 Packaging Information
  10. 10Package Option Addendum
    1. 10.1 Packaging Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

ADC Electrical and Timing Specifications

Table 6-19 MibADC Recommended Operating Conditions

PARAMETER MIN MAX UNIT
ADREFHI A-to-D high-voltage reference source ADREFLO VCCAD(1) V
ADREFLO A-to-D low-voltage reference source VSSAD(1) ADREFHI V
VAI Analog input voltage ADREFLO ADREFHI V
IAIC Analog input clamp current(2) (VAI < VSSAD – 0.3 or VAI > VCCAD + 0.3) –2 2 mA
For VCCAD and VSSAD recommended operating conditions, see Section 4.4.
Input currents into any ADC input channel outside the specified limits could affect conversion results of other channels.

Table 6-20 MibADC Electrical Characteristics Over Full Ranges of Recommended Operating Conditions(2)

PARAMETER DESCRIPTION/CONDITIONS MIN MAX UNIT
Rmux Analog input mux on-resistance See Figure 6-10 250 Ω
Rsamp ADC sample switch on-resistance See Figure 6-10 250 Ω
Cmux Input mux capacitance See Figure 6-10 16 pF
Csamp ADC sample capacitance See Figure 6-10 13 pF
IAIL Analog off-state input leakage current VCCAD = 3.6 V VSSAD ≤ VIN < VSSAD + 100 mV –300 200 nA
VSSAD + 100 mV ≤ VIN ≤ VCCAD – 200 mV –280 280
VCCAD – 200 mV < VIN ≤ VCCAD –200 650
IAIL Analog off-state input leakage current VCCAD = 5.25 V VSSAD ≤ VIN < VSSAD + 300 mV –1000 250 nA
VSSAD + 300 mV ≤ VIN ≤ VCCAD – 300 mV –450 450
VCCAD – 300 mV < VIN ≤ VCCAD –250 2000
IAOSB(1) Analog on-state input bias current VCCAD = 3.6 V VSSAD ≤ VIN < VSSAD + 100 mV –10 2 µA
VSSAD + 100 mV < VIN < VCCAD – 200 mV –4 2
VCCAD – 200 mV < VIN < VCCAD –4 16
IAOSB(1) Analog on-state input bias current VCCAD = 5.25 V VSSAD ≤ VIN < VSSAD + 300 mV –12 3 µA
VSSAD + 300 mV ≤ VIN ≤ VCCAD – 300 mV –5 3
VCCAD – 300 mV < VIN ≤ VCCAD –5 18
If a shared channel is being converted by both ADC converters at the same time, the on-state leakage is doubled.
For ICCAD and ICCREFHI see Section 4.7.
TMS570LC4357-EP mibadc_circuit_pns160.gifFigure 6-10 MibADC Input Equivalent Circuit

Table 6-21 MibADC Timing Specifications

PARAMETER MIN NOM MAX UNIT
tc(ADCLK)(1) Cycle time, MibADC clock 0.033 µs
td(SH)(2) Delay time, sample and hold time 0.2 µs
12-BIT MODE
td(C) Delay time, conversion time 0.4 µs
td(SHC)(3) Delay time, total sample/hold and conversion time 0.6 µs
10-BIT MODE
td(C) Delay time, conversion time 0.33 µs
td(SHC)(3) Delay time, total sample/hold and conversion time 0.53 µs
The MibADC clock is the ADCLK, generated by dividing down the VCLK1 by a prescale factor defined by the ADCLOCKCR register bits 4:0.
The sample and hold time for the ADC conversions is defined by the ADCLK frequency and the AD<GP>SAMP register for each conversion group. The sample time must be determined by accounting for the external impedance connected to the input channel as well as the internal impedance of the ADC.
This is the minimum sample/hold and conversion time that can be achieved. These parameters are dependent on many factors (for example, the prescale settings).

Table 6-22 MibADC Operating Characteristics Over 3.0 V to 3.6 V Operating Conditions(1)(2)

PARAMETER DESCRIPTION/CONDITIONS MIN MAX UNIT
CR Conversion range over which specified accuracy is maintained ADREFHI - ADREFLO 3 3.6 V
ZSET Zero Scale Offset Difference between the first ideal transition (from code 000h to 001h) and the actual transition 10-bit mode 1 LSB
12-bit mode 2 LSB
FSET Full Scale Offset Difference between the range of the measured code transitions (from first to last) and the range of the ideal code transitions 10-bit mode 2 LSB
12-bit mode 3 LSB
EDNL Differential nonlinearity error Difference between the actual step width and the ideal value. (See Figure 6-11) 10-bit mode –1 1.5 LSB
12-bit mode –1 2 LSB
EINL Integral nonlinearity error Maximum deviation from the best straight line through the MibADC. MibADC transfer characteristics, excluding the quantization error. 10-bit mode –2 2 LSB
12-bit mode –2 2 LSB
ETOT Total unadjusted error (after calibration) Maximum value of the difference between an analog value and the ideal midstep value. 10-bit mode –2 2 LSB
12-bit mode –4 4 LSB
1 LSB = (ADREFHI – ADREFLO)/ 212 for 12-bit mode
1 LSB = (ADREFHI – ADREFLO)/ 210 for 10-bit mode

Table 6-23 MibADC Operating Characteristics Over 3.6 V to 5.25 V Operating Conditions(1)(2)

PARAMETER DESCRIPTION/CONDITIONS MIN MAX UNIT
CR Conversion range over which specified accuracy is maintained ADREFHI - ADREFLO 3.6 5.25 V
ZSET Zero Scale Offset Difference between the first ideal transition (from code 000h to 001h) and the actual transition 10-bit mode 1 LSB
12-bit mode 2 LSB
FSET Full Scale Offset Difference between the range of the measured code transitions (from first to last) and the range of the ideal code transitions 10-bit mode 2 LSB
12-bit mode 3 LSB
EDNL Differential nonlinearity error Difference between the actual step width and the ideal value. (See Figure 6-11) 10-bit mode –1 1.5 LSB
12-bit mode –1 3 LSB
EINL Integral nonlinearity error Maximum deviation from the best straight line through the MibADC. MibADC transfer characteristics, excluding the quantization error. 10-bit mode –2 2 LSB
12-bit mode –4.5 2 LSB
ETOT Total unadjusted error (after calibration) Maximum value of the difference between an analog value and the ideal midstep value. 10-bit mode –2 2 LSB
12-bit mode –6 5 LSB