SCDS418E July   2020  – January 2022 TMUX7208 , TMUX7209

PRODUCTION DATA  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Device Comparison Table
  6. Pin Configuration and Functions
  7. Specifications
    1. 7.1  Absolute Maximum Ratings
    2. 7.2  ESD Ratings
    3. 7.3  Thermal Information
    4. 7.4  Recommended Operating Conditions
    5. 7.5  Source or Drain Continuous Current
    6. 7.6  ±15 V Dual Supply: Electrical Characteristics 
    7. 7.7  ±15 V Dual Supply: Switching Characteristics 
    8. 7.8  ±20 V Dual Supply: Electrical Characteristics
    9. 7.9  ±20 V Dual Supply: Switching Characteristics
    10. 7.10 44 V Single Supply: Electrical Characteristics 
    11. 7.11 44 V Single Supply: Switching Characteristics 
    12. 7.12 12 V Single Supply: Electrical Characteristics 
    13. 7.13 12 V Single Supply: Switching Characteristics 
    14. 7.14 Typical Characteristics
  8. Parameter Measurement Information
    1. 8.1  On-Resistance
    2. 8.2  Off-Leakage Current
    3. 8.3  On-Leakage Current
    4. 8.4  Transition Time
    5. 8.5  tON(EN) and tOFF(EN)
    6. 8.6  Break-Before-Make
    7. 8.7  tON (VDD) Time
    8. 8.8  Propagation Delay
    9. 8.9  Charge Injection
    10. 8.10 Off Isolation
    11. 8.11 Crosstalk
    12. 8.12 Bandwidth
    13. 8.13 THD + Noise
    14. 8.14 Power Supply Rejection Ratio (PSRR)
  9. Detailed Description
    1. 9.1 Overview
    2. 9.2 Functional Block Diagram
    3. 9.3 Feature Description
      1. 9.3.1 Bidirectional Operation
      2. 9.3.2 Rail-to-Rail Operation
      3. 9.3.3 1.8 V Logic Compatible Inputs
      4. 9.3.4 Integrated Pull-Down Resistor on Logic Pins
      5. 9.3.5 Fail-Safe Logic
      6. 9.3.6 Latch-Up Immune
      7. 9.3.7 Ultra-Low Charge Injection
    4. 9.4 Device Functional Modes
    5. 9.5 Truth Tables
  10. 10Application and Implementation
    1. 10.1 Application Information
    2. 10.2 Typical Application
      1. 10.2.1 Design Requirements
      2. 10.2.2 Detailed Design Procedure
      3. 10.2.3 Application Curve
  11. 11Power Supply Recommendations
  12. 12Layout
    1. 12.1 Layout Guidelines
    2. 12.2 Layout Example
  13. 13Device and Documentation Support
    1. 13.1 Documentation Support
      1. 13.1.1 Related Documentation
    2. 13.2 Receiving Notification of Documentation Updates
    3. 13.3 Support Resources
    4. 13.4 Trademarks
    5. 13.5 Electrostatic Discharge Caution
    6. 13.6 Glossary
  14. 14Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Latch-Up Immune

Latch-Up is a condition where a low impedance path is created between a supply pin and ground. This condition is caused by a trigger (current injection or overvoltage), but once activated, the low impedance path remains even after the trigger is no longer present. This low impedance path may cause system upset or catastrophic damage due to excessive current levels. The Latch-Up condition typically requires a power cycle to eliminate the low impedance path.

The TMUX72xx family of devices are constructed on Silicon on Insulator (SOI) based process where an oxide layer is added between the PMOS and NMOS transistor of each CMOS switch to prevent parasitic structures from forming. The oxide layer is also known as an insulating trench and prevents triggering of latch up events due to overvoltage or current injections. The latch-up immunity feature allows the TMUX72xx family of switches and multiplexers to be used in harsh environments. For more information on latch-up immunity refer to Using Latch Up Immune Multiplexers to Help Improve System Reliability.